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Abstract— Fine-tuning of pretrained convolutional neural net-
works (CNNs) has been proven to be an effective strategy for
remote sensing image scene classification, particularly when a
limited number of labeled data sets are available for training
purposes. However, such a fine-tuning process often needs that
the input images are resized into a fixed size to generate input
vectors of the size required by fully connected layers (FCLs)
in the pretrained CNN model. Such a resizing process often
discards key information in the scenes and thus deteriorates
the classification performance. To address this issue, in this
paper, we introduce a scale-free CNN (SF-CNN) for remote
sensing scene classification. Specifically, the FCLs in the CNN
model are first converted into convolutional layers, which not
only allow the input images to be of arbitrary sizes but also
retain the ability to extract discriminative features using a
traditional sliding-window-based strategy. Then, a global average
pooling (GAP) layer is added after the final convolutional layer
so that input images of arbitrary size can be mapped to feature
maps of uniform size. Finally, we utilize the resulting feature
maps to create a new FCL that is fed to a softmax layer for
final classification. Our experimental results conducted using
several real data sets demonstrate the superiority of the proposed
SF-CNN method over several well-known classification methods,
including pretrained CNN-based ones.

Index Terms—Free-scale convolutional neural networks
(CNNs), fully connected layers (FCLs), remote sensing scene
classification.
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I. INTRODUCTION

ITH the fast development of satellite sensor technol-
Wogy, remote sensing scene classification has drawn
significant attention due to the wide range of applications that
can now be addressed with such instruments, including urban
planning [1], traffic flow prediction [2], and military recon-
naissance [3]. The goal of remote sensing scene classification
is to assign a specific label (e.g., beach or bridge) to a query
remote sensing image.

In order to recognize a particular scene from a set of
remotely sensed images, numerous feature extraction (FE) and
classification methods have been proposed in the past decades,
and an extensive review of them can be found in [4] and [5].
FE is a crucial part of the scene recognition process, which can
be divided into three levels: 1) low-level FE; 2) midlevel FE;
and 3) high-level FE. Early works on scene classification are
based on low-level features, such as color [6], texture [7],
and scale-invariant [8] features. However, low-level features
may be too simple to describe the complex spatial layout
of remote sensing scenes. To address this problem, many
midlevel FE methods have been proposed. The bag-of-visual-
words model [9] and the dictionary learning method [10] are
two classic approaches for midlevel FE. Furthermore, to bridge
the semantic gap, high-level FE techniques based on convo-
lutional neural networks (CNNs) have been introduced in the
field of remote sensing scene classification. The development
process of these three different levels of FE methods reveals
some important insights, as described in the following.

The key to low-level FE methods is the design of fea-
ture descriptors, such as color descriptors, textural descrip-
tors, and scale-invariant descriptors. Specifically, in [11],
an improved color code is introduced to accelerate scene
classification performance by combining the advantages of
digital image processing, geographical information systems,
and data mining. In [12], morphological texture descriptors are
applied to extract useful content from remotely sensed images.
In [13], a method to extract scale and rotation-invariant fea-
tures is proposed that greatly promotes feature generalization.
Moreover, in [14], multiple kinds of feature descriptors are
used to extract rich information from remotely sensed images,
thus enhancing image representation and scene classification.
However, the aforementioned methods only focus on relatively
simple low-level features that cannot fully capture the rich
information contained in remotely sensed images.
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To solve this problem, many researchers have been focusing
on how to efficiently represent remote sensing images using
midlevel features. The main process of midlevel FE methods
is to use a set of handcrafted feature descriptors (e.g., color
or texture descriptors) to extract local image attributes from the
original images and then build high-order statistical patterns
by encoding these features [15]-[18]. The k-means clustering
is a basic strategy to combine multiple kinds of features, and
the bag-of-visual word-based methods [19], [20] are also quite
popular in this context due to their effectiveness and simplicity.
In [21], spatial pyramid matching is adopted to enhance the
bag-of-visual-words model by combining local and global
features. Furthermore, sparse coding [22], [23] has also been
adopted for scene classification purposes by adding a sparsity
constraint to the feature distributions that effectively reduces
the complexity of the model and simplifies the associated
learning tasks. In [24], a weighted deconvolutional sparse
coding model is proposed for unsupervised extraction of edges
and texture details from remotely sensed images. Nevertheless,
these methods still heavily rely on low-level feature descriptors
and cannot fully capture the high-level semantic information
contained in the scenes.

In recent years, based on the excellent performance of
CNNs in many image classification challenges (e.g., the Ima-
geNet [25], Openimage [26], and Places365 [27]), numerous
researchers have focused on adapting CNN-based methods to
remote sensing problems [28]-[31]. CNN models can auto-
matically achieve effective feature representation by means
of hierarchical layers, where the shallow layers extract local
low-level features and the deep layers extract global high-
level semantic features [32], [33]. These high-level seman-
tic features can be directly utilized to bridge the semantic
gap between different scenes within the same class and
thus achieve a better classification performance. Specifically,
[34] proposes a gradient boosting random framework that uti-
lizes CNN models, pretrained on a data set made up of natural
images to accelerate the scene classification performance by
integrating models with different structures. Considering the
data shift problem between natural images and remote sensing
images, a domain adaptation network is introduced in [35].
Resulting from the fact that different layers provide informa-
tion with different degrees of effectiveness, [36] and [37] fuse
features from different layers of a CNN model, pretrained on
ImageNet, to increase the classification accuracy. Moreover,
to solve the interclass similarity and intraclass diversity prob-
lems in remote sensing image data sets, off-the-shelf models
are equipped with metric learning in [38] and [39] to enhance
the scene classification results by changing the final feature
space distribution. In general, fine-tuning CNN models that
have been pretrained on a data set made up of natural images
can provide an effective and also efficient strategy for remote
sensing scene classification [40]-[42]. This is because only
thousands of labeled images exist in remote sensing data sets
(e.g., the UC Merced Land-Use data set [43], the Aerial Image
data set, and the NWPU-RESISC45 data set) compared with
millions of labeled images available in natural image data sets
(e.g., ImageNet, Openimage, and Places365), and thus, it is
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Fig. 1. (a) Original image with a size of 600 x 600 pixels. (b) Resized image
with 224 x 224 pixels. The red rectangle marks an area that loses important
details in the resizing process.

hard to train a CNN model from scratch for remote sensing
scene classification.

Although fine-tuning the pretrained CNN models can lead
to an acceptable performance in remote sensing scene classi-
fication, this strategy also has some limitations. Specifically,
pretrained CNN models are learned on data sets of a relatively
small and fixed size (e.g., 224 x 224 pixels in AlexNet [44])
due to the matrix operations performed in the fully connected
layers (FCLs), and thus, it is required that the input images
to be processed to have the same size as the images used
for pretraining when the pretrained CNN models are fine-
tuned. On the other hand, remote sensing images usually have
higher sizes than the maximum ones allowed by pretrained
CNN models. For example, in the widely used Aerial Image
remote sensing scene data set [4], each image has a size
of 600 x 600 pixels, which is much higher than the maxi-
mum image size allowed by AlexNet, i.e., 224 x 224 pixels.
A common strategy to address this limitation is to resize the
original image (e.g., from 600 x 600 to 224 x 224 pixels,
as shown in Fig. 1) [45], [46]. However, some key infor-
mation in the original image is inevitably lost during the
preprocessing [notice the area marked with a red rectangle
in Fig. 1(a) and (b)].

To address the aforementioned problems, in this paper,
we develop a new scale-free CNN (SF-CNN) architecture that
can process remotely sensed images of arbitrary size, retaining
the strong FE ability of pretrained CNN models. As it is
the case with most pretrained CNN models, our proposed
approach consists of two main parts: the convolutional layers
and the FCLs. However, as opposed to traditional methods,
in which the FCLs have a restriction that the sizes of the input
image should be the same as those in the pretrained model,
our SF-CNN addresses this issue by performing a convolution
strategy on the FCLs while still efficiently extracting dis-
criminative and highly representative features from the input
images in a sliding-window manner. Furthermore, our newly
developed SF-CNN adds a global average pooling (GAP) layer



6918

after the final convolutional layer, mapping the input images
of arbitrary size to feature maps of fixed size. The final output
from the pooling layer is fed to the FCL and a softmax layer to
obtain the final probability of each category. Our experimental
results demonstrate that the proposed method can indeed fully
utilize the remotely sensed images available (regardless of
their size) and outperform the baseline methods and some
state-of-the-art approaches on several publicly available bench-
mark data sets.

The remainder of this paper is organized as follows.
Section II reviews some related works. Section III introduces
the proposed SF-CNN. Section IV shows our experimental
results conducted on several publicly available benchmark data
sets. Section V concludes this paper with some remarks and
hints at plausible future research lines.

II. RELATED WORKS
A. Structure of the CNN Model

With the rapid development of CNNs in the classification
of natural images, many pretrained CNN models are now
publicly available (e.g., AlexNet [44], GoogleNet [47], and
VGGNet [48]). Generally, the most representative and discrim-
inative features are captured by convolutional layers and FCLs.
In this section, the mechanisms of these two types of layers
are described in detail.

1) Convolutional Layer: The CNN model contains a group
of cascaded convolutional layers, each comprising a set of
convolutional kernels (also called filters), which are used to
convolve the input data and then produce different kinds
of output data. Let X; = {x7,7.7.i, .- Xwhci>---» XWHCi}—
where W represents the width, H represents the height, and
C represents the channel—be the input pattern in the ith
convolutional layer. Let us also assume that there are a total
of J kernels in the ith convolutional layer and that the
size of each kernel is K x K x C, where K represents the
width and height and C is the channel of each kernel. Let
Wii={Wi11jis- s Wkkegis - - - » WKK,Cji}—With [ < j < J,
1 < K < Wand I < K < H—be the jth kernel in
the ith layer. The output of this convolutional layer ¥;; =

{y],],j,i’ ce ’yw,h,j,ia B yW—K+1,H—K+1,j,i} can be obtained by
Yjii =Xi @ Wj; (1
where Y; = {Yy;,...,Yji, ..., Yy} is the output of this layer

and ® is the convolutional operation. Without padding, this
operation is denoted as

cC K K

Yw,hji = Z Z Z Wm,n,c,j,iXw+m-1,h+n-1,c,i- 2)
c=1 n=1 m=1
The mapping in (1) can also be defined as Y; = f(X;). When
a CNN model is fine-tuned, and despite the fact that the size
of Wii ={Wryi,..., Wji,..., Wy;} is fixed, the size of X; is
arbitrary. In conclusion, the mapping in (1) is not limited by
the size of the input data.

2) Fully Connected Layer: Several FCLs follow the design
of the final convolutional layer in the CNN model. The rth
FCL has a mapping matrix S; = {s7.7, . . S SMN.t}
of size M x N. It fully connects all the output data in the

. sm,n,t, .
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previous layer and maps the data to a new vector Z; =
{Zit> s Znt» - - - » 2N} With size 1 x N. Specifically, the output
of the previous layer, which is also the input of the rth layer,
needs to be reshaped to A = {aj s, ..., ams, - .., aps}, Of size
1x M. In addition, the output from a convolutional layer can be
represented as X; = {x7,7,7i, .. .>Xwhei> - - - » XWH,C,i}» Where
M = W x H x C. The relationship between A; and X; can be
represented as A; = ¢(X;). The above-mentioned relationship
can be denoted as

Z = AiSt 3)

where each z,,; of Z; can be obtained by

M
ngt = Z Am,tSm,n,t- )
m=1

In a transfer learning task, the FCLs in the pretrained model
are essential to achieve high performance [49]. During the fine-
tuning process of the CNN model, the size of S; (M x N)
is fixed, so that the size of A; should match this size. This
imposes a limitation that the input images should have a
fixed size. In addition, the CNN model used for classification
purposes must use an FCL to generate the final label.

B. CNN-Based Scene Classification

CNNss exhibit powerful generalization ability and very good
performance on natural image classification problems [50].
The great success of the CNN model is partly due to the
huge amount of labeled training data sets available (e.g., the
ImageNet, Openimage, and Places365 data sets have millions
of labeled images). Recently, the CNN model has also been
extended to remote sensing scene classification [51]-[54].
Since the number of labeled remote sensing images is still lim-
ited (e.g., the widely used Aerial Image data set only contains
10000 labeled samples [4]), CNN models cannot be trained
from scratch using these data sets. A popular strategy to allevi-
ate this limitation is to adopt a transfer learning method, which
utilizes the available remotely sensed images to fine-tune
some CNN models (e.g., AlexNet, GoogleNet, or VGGNet)
that have been already pretrained on some large-scale data
set. Generally, fine-tuning of a pretrained CNN model takes
advantage of the pretrained convolutional layers and FCLs to
adapt the architecture to new classification tasks. This strategy
has been shown to be effective for remote sensing scene
classification purposes [34]-[42], [45].

III. SCALE-FREE CONVOLUTIONAL NEURAL NETWORK

Although fine-tuning CNNs can achieve the state-of-the-art
scene classification performance in remote sensing prob-
lems, all available pretrained CNN models need to resize
the input remotely sensed scene into a (lower) fixed size
and thus inevitably discard some key information in the
scene, which eventually deteriorates the scene recognition task.
As described in Section II, this limitation results from the use
of FCL matrices of fixed size, including the FCL matrix used
to obtain the final label. In other words, the size of the input
images must always match the size of the FCLs due to these
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matrix operations. In order to address this limitation and allow
the input scenes to be of arbitrary size, we introduce a new
SF-CNN in this section. Note that our method does not reduce
the powerful FE ability of pretrained CNN models, since
we have used an equivalent structure in our newly proposed
architecture, as described in the following.

A. Architecture of the SF-CNN

Fig. 2(b) shows the architecture of the proposed SF-CNN,
in which the parameters of the convolutional layer are directly
transferred from a pretrained CNN model on ImageNet.
Specifically, the proposed SF-CNN contains two main com-
ponents: 1) FCLs’ convolution and 2) extra GAP layer. With
these two components, the proposed SF-CNN allows the input
remote sensing scenes to be of arbitrary size. Note that the first
component is crucial to retain the ability of the pretrained CNN
model to extract effective features for scene classification.
The second component matches the input data of the FCL
to the size of the FCL needed to obtain the final label. In the
following, these two key components (and the optimization
process of our newly developed SF-CNN) are described in
detail.

1) FCLs’ Convolution: As described in Section II-A2,
although FCLs are very important for transfer learning, they

Convolution

(©

Graphical representation of the architecture of (a) original model, (b) our SF-CNN model, and (c¢) FCL convolution.

require that the input images have a fixed size. Generally,
the data streams flowing into the FCLs can be divided
into two main categories. The first one is the output of a
convolutional layer X; = {X77.74,.--»Xwheis---» XWHC.i}s
which is vectorized as A = {ass, ..., Amy, - - ., aps} before
feeding it into the rth FCL by regularization, denoted by
Ay = ¢(X;). The second one is the output of the other

FCL Z; = {z74,---» 201, - - -» 2ns)- In the tth FCL, the input
data Ay = {a;s1,...,ami, ..., ap;} are linearly mapped to a
vector Zy = {214, -+ Znts - - - » 2N} DY @ mapping matrix Sy =

{S1.74 s Smnts - - - » SMN,t}- The size of the input images must
be fixed during the fine-tuning of a pretrained CNN model due
to the mapping matrix S;, which is of fixed size. Therefore,
the remotely sensed scenes used to fine-tune CNN models
normally need to be resized, which may discard key informa-
tion in the scenes. However, as mentioned in Section II-Al,
input images with arbitrary size can now be directly fed into
the convolutional layers in a transfer learning task. In other
words, the convolutional layers have no limitation regarding
the size of the input images. Hence, it is effective to modify
the FCLs to match the convolutional layers [55] so that the
remote sensing scenes with arbitrary size can be directly fed
into the pretrained CNN model. A feasible strategy is FCLs’
convolution, achieved by converting the mapping matrix to
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TABLE I
SETTING OF THE HYPERPARAMETERS USED FOR OPTIMIZATION

Models Iterations  Batch sizes  Learning rates (convolutional layer)  Learning rates (FCL) ~ Weight decay = Momentum  Optimization algorithm
AlexNet 15000 128 0.001 0.01 0.0005 0.9 Nesterov
GoogleNet 15000 128 0.001 0.01 0.0005 0.9 Nesterov
VGGNet 15000 50 0.001 0.01 0.0005 0.9 Nesterov

the convolutional kernels. The FCLs’ convolution not only where N is the number of classes and P = [Py,...,

efficiently extracts features from the input data but also elimi-
nates the limitation that the input data need to have a fixed size.
Here, to this end, the nth column of the mapping matrix Sy, =
{Simts s Smnts---»SMns} 18 converted into the nth convo-
lutional kernel Wy; = (Wi 1,10 - > Wwhenis - - - » WWH,Cnyi}
by a mapping regulation S,; = ¢(Wp;). On the one
hand, the original input data from the convolutional layer
Xi = {x1.1005 s Xwheis - --»XwHC,i} are directly fed into
this FCL, and C of W,; is regarded as the C of X;.
On the other hand, when the original input data come
from the FCL A; = {asis...,ams .-, am,), the width
and height of the input data can be regarded as X; =
(X1,0,0,is---»X11,¢i»--->X1,1,¢,i}, and W and H of W,; are all
set to 1 W; = (Wi 1.1nis-->WIlLenis---sWi,1,Cni}- In this
context, C of X; is equal to M of A;. As a matter of fact,
the FCL can be regarded as a special kind of convolutional
layer, where the size of the convolutional kernels equals the
size of the input data. The equivalence of this transformation
process is demonstrated in Section III-A2.

2) Global Average Pooling Layer: The GAP layer has
been used by some available CNN architectures to reduce
the model size and address overfitting issues [56], [57].
Compared with the global max pooling (GMP), the GAP is
more suitable for classification tasks [58], [59], especially for
scene classification tasks, where some categories (e.g., center
and school) require global information to classify. By contrast,
the GMP is suitable for object localization tasks [60], [61] due
to its robustness to the local spatial variation [62]-[64]. Our
method incorporates a GAP layer right after the final convo-
lutional layer. Specifically, the size of the input data X; =
{X1.000s -+ s Xwhcis - - - » XwH,C,i} in the ith layer is Wx H x C,
and the size of the output data G; = {g;,,...,8¢i»--->&ci}
in the ith layer is 1 x C. The operation conducted by the GAP
layer is given by

w H
ZW:I Zh:] Xy, h,c,i
Wx H

8c,i = )
This operation is used to obtain the average value of each
channel, so that the arbitrary size of the output data is only
related to the number of channels, which depends on the value
of j in the last convolutional layer.

3) Optimization: The output of the final FCL Z; =
{zi6r---»2nss - -->2N4} 18 fed to the softmax layer in order to
obtain the probability that of each image belonging to each
class. This probability is denoted as follows [65]:

%kt

Zi’lvzl eZn,t ?

Py = k=1,... N (6)

SN, .

Pi, ..., Py]T. Then, the class with the maximal probability
is used as the estimated label J, for each image. Based on
the estimated labels, the loss function Ly can be obtained via
a combination of logistic loss and an additional weight decay
term for regularization

minLy = min (— Z 6 -log(P)

batch
(W= 1) o

where 6 represents a vector that uses 1 as a true label and
0 otherwise, the W) represents the set of all parameters
in the convolutional layers, the S*) represents the set of all
parameters in the FCLs, and 1 is the weight decay coef-
ficient of the SF-CNN. To minimize the loss function Ly,
the backward propagation algorithm [66] is adopted to update
the aforementioned parameters W() and S©). Specifically,
it propagates the predicted error from the last layer to the first
one and modifies the parameters according to the gradient of
the propagated error at each layer. In general, the stochastic
gradient descent (SGD) algorithm is applied to achieve this
goal. Table I summarizes the hyperparameters used for opti-
mization. Note that the batch size of VGGNet is set to 50 due
to the limitations in the memory of the graphical processing
unit (GPU) used for implementing our approach.

B. Equivalence Proof of the FCLs’ Convolution

In this section, our proposed FCLs’ convolution is proved
to be an equivalent transformation, with no effects on the
training and testing process, compared with the original FCLs.
These two processes consist of forward propagation and back-
propagation. Specifically, in order to make the proof more
concise, we define Sus = {S1n6 -5 Smnits - - -» SMpnt), and a
new mapping regulation y is defined as

Xi = w(p(Xy). ®)
This mapping regulation y is considered an inverse map-
ping ¢. In the following, we detail the equivalence proof on
the forward propagation and backpropagation phases.

1) Equivalence Proof on the Forward Propagation Phase:
As described in Section II, in the ith FCL, the relationship
between the input data A; = {ass, ..., amys, - - ., ap,} and the
output data Z; = {z7.4, ..., 20t ---, 2N} Can be represented
as Z; = A;S;. According to Sections II and III-Al, the
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convolution transformation can be denoted as

Yi=v@A) [y S, s wSno)s ..., wSno]  (9)
Yi=[Xi®@Wpi,....Xi @ Wy, ..., X;i @ Wy, (10)
Yi=[Ypi,....Y0i,..., YN, (11

On the one hand, when the sizes of X; and W,,; are the same,
the number of elements in Y, ; is 1, which means that W and
H of Y,; are 1. From (2), (11) can be obtained by

C H W
Yui= Z Z Z Wy, h,c,n,iXw,h,c,i-
c=1 h=1 w=I
On the other hand, when the matrices (X; and W,;) are
obtained from vectors (A; and s, ;) by the same regulation (y),
WwheniXwhe,i and apSmn: have a one-to-one relationship,
and an equality relation can be obtained as follows:

12)

13)
(14)

Yn,i = Zn,t»
Y = Z,.

From (14), no changes are found in the output after the FCLs’
convolution, which indicates that this operation retains its
ability to extract discriminative features.

2) Equivalence Proof on the Backpropagation Phase:
Because of the existing equivalence between Y; and Z;
[from (14)], to make the process more concise, the mappings
between P and the output Y; or Z; are defined as

P = F(Y;) 15)
or
P =F(Z) (16)
During the backpropagation process, S; is updated by
oLy
St =8t —a—. 17
t t—a 28, (17)
From (3), (6), and (7), g—g‘-t’ of (17) can be solved as
2 a2
ot _—o(s.0-tosm) 2 (IWIEISOL)
6St B 6St aSt
o (I
oLy 0(>.0-1og(P)) oP 0Z; ( F
—— = ——— 4+ ]l —=  (19)
EXy oP 0Z; 08y aS;
0 0 0 -log(P
oy _ —MF/(Z,) Ay
0S¢ oP
o ( ZN—] ZM—J S )
j. n= m= m,n, 20
+ a5, (20)
0 6 -log(P
S =8 —a (—MF’(ZQ Ay
oP
6( EN—] EM—J S z)
j, n= m= m,n, 21
+ as, (2D
0 0 -log(P)
Smynt = Smn,t — O (_%F/(Zt) *Amyt
+2ASmn, ,) . (22)
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After the convolution transformation, the optimization is now
denoted as follows:

aLf
ow;’
From (1), (2), (6), (7), (11), and (12), (6Ls/0W;) of (23) can
be solved as

oty —o(5.0-togy) 22 (IWOL: +15lF)

Wi=W;—a

(23)

ow; ow; oW,
(24)
312
oLy 0(X,0-log(P)) oP 0Y; N /19 (HW()HF>
ow; oP oY; oW; oW;
(25)
L 0 6 -log(P
oLy _ _—(ZZ 0g(P)) F'(Yi) - X
oW; oP
C
+ia( ilVZI ZC:] ZhH:] Zv‘i)V:] va,h,c,n,i) (26)
oWw;
0 0 -log(P
Wi=W;—a (—WF/(YJ - Xi,
N C H w
—i—ﬂ.a( Zn:l Zc:] Zh:] Zw:] va,h,c,n,i) (27)
oWw;
(22,0 - log(P))
Wwh,eni = Wwh,eni — & (_ZTF/(YH *Xwhc,i
+2/1Ww,h,c,n,i) . (28)

Since W; = w(S;), Xi = y(A;) and y is a linear mapping
with a coefficient of 1 and a bias of 0, relationship between
the Wy enis Xwh.e,is Smn,i» and am,; is denoted as

YSim,nis El!"‘/w,h,c,n,i = Sm,n,t and Am,t = Xwh,c,i- (29)
From (14)—(16), this expression can be solved as
F'(Z) = F'(Y)). (30)

Therefore, we conclude that (22) and (28) are equivalent.
Based on the aforementioned description, the convolution
transformation is indeed equivalent during the backpropaga-
tion phase.

IV. EXPERIMENTAL RESULTS
A. Data Sets’ Description

To validate the effectiveness of our newly developed
SF-CNN model, we perform a set of comprehensive experi-
ments on three publicly available benchmark remote sensing
scene data sets that are the UC Merced Land-Use data set [43],
the Aerial Image data set [4], and the NWPU-RESISC45
data set [5].

1) The UC Merced Land-Use data set consists
of 2100 images divided into 21 land-use classes, includ-
ing agricultural, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway,
golf course, harbor, intersection, medium residential,
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Fig. 3.
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T# Densereside;ltial

12# Intersection

Some examples of scenes that are easily misclassified in the UC Merced Land-Use data set.

23# Resvort

174# Park

Fig. 4. Some examples of scenes with high interclass similarity in the Aerial Image data set.

2)

mobile home park, overpass, parking lot, river, runway,
sparse residential, storage tanks, and tennis courts. Each
class contains 100 aerial images with 256 x 256 pixels,
and each pixel has a spatial resolution of 0.3 m in the
red—green—blue (RGB) color space. Fig. 3 shows some
examples of scenes in the UC Merced Land-Use data
set which are easily misclassified.

The Aerial Image data set consists of 10000 images
divided into 30 scene classes, including airport, bare
land, baseball field, beach, bridge, center, church,
commercial, dense residential, desert, farmland, forest,
industrial, meadow, medium residential, mountain, park,
parking, playground, pond, port, railway station, resort,
river, school, sparse residential, square, stadium, storage
tanks, and viaduct. Each class contains hundreds of
aerial images (from 220 to 420) with 600 x 600 pixels
in the RGB color space. The spatial resolution of these
image ranges from 8 to 0.5 m/pixel. Fig. 4 shows some

area, dense residential, desert, forest, freeway, golf
course, ground track field, harbor, industrial area,
intersection, island, lake, meadow, medium residential,
mobile home park, mountain, overpass, palace, parking
lot, railway, railway station, rectangular farmland, river,
roundabout, runway, sea ice, ship, snowberg, sparse
residential, stadium, storage tank, tennis court, terrace,
thermal power station, and wetland. Each class contains
700 images with spatial resolution ranging from about
30 to 0.2 m/pixel and a size of 256 x 256 pixels
in the RGB color space. This is one of the largest
remote sensing scene data sets in terms of the number
of images and the categories, which leads to larger
intraclass differences and higher interclass similarities
than the ones observed in the two aforementioned data
sets. Some examples are given in Fig. 5.

examples of the Aerial Image data set. As it can be B Experimental Setup

seen in Fig. 4, some classes exhibit a very high interclass
similarity (e.g., bare land and desert), which is the main
difficulty for the classification of scenes in this data set.
3) The NWPU-RESISC45 data set consists of 31500 ima-
ges divided into 45 classes, including airplane, air-
port, baseball diamond, basketball court, beach, bridge,
chaparral, church, circular farmland, cloud, commercial

For the UC Merced Land-Use data set, a training proportion
of 80% (Pr = 80%) randomly selected samples is considered
for training, and the remaining 20% of the labeled samples
are used for testing. For the Aerial Image data set, the con-
sidered training proportions are Pr = 20% and Pr = 50%.
For the NWPU-RESISC45 data set, the considered training
proportions are Pr = 10% and Pr = 20%. These proportions



XIE et al.: SF-CNN FOR REMOTE SENSING SCENE CLASSIFICATION

6923

+ .
32# Rectangular farmland 33# River 45# Wetland 45# Wetland
Fig. 5. Some classes with large intraclass difference and high interclass similarity in the NWPU-RESISC45 data set.
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Fig. 6. Graphical illustration of the benefits obtained using remote sensing images without a fixed size for scene classification using our newly proposed

SF-CNN model. Three different pretraining strategies are considered. (a) AlexNet. (b) GoogleNet. (c) VGGNet.

have been selected in accordance with the previous studies
in the literature, in order to facilitate our comparisons with
state-of-the-art approaches.

To evaluate the results of the proposed SF-CNN for
scene classification, the average accuracy (AA), the Kappa
coefficient (Kappa), the overall accuracy (OA), and the
confusion matrix are adopted as evaluation metrics in the
following experiments. Three classic pretrained CNN models
(i.e., AlexNet, GoogleNet, or VGGNet) are utilized to analyze
the generalization ability of our proposed framework on the
three publicly available remote sensing scene data sets. The
pretrained FCLs of these CNN models are convolutionalized,
and a large-margin Gaussian mixture loss is added to obtain
more representative and discriminative features [67]. In addi-
tion, all our experimental results are obtained as the average
of ten repeated experiments using different, randomly selected
training samples. Our experiments are conducted on a PC with
CPU i7-7700K, 16 GB of RAM, and a GPU (GTX 1080 Ti).

C. Benefits of Using Input Images With Different Sizes

To illustrate that the exploitation of remotely sensed images
without any limitations regarding their size can significantly
enhance the classification accuracies obtained by the proposed
SF-CNN model, in this experiment, we consider input images
with different sizes. We take the images in the Aerial Image
data set as a baseline due to their original size of 600 x 600
pixels. These images are resized to 224 x 224, 256 x 256,
300 x 300, 400 x 400, and 500 x 500 pixels. Note that,
due to the memory limitations of the GPU (GTX 1080 Ti)
used in our experiments, the SF-CNN models pretrained with

GoogleNet and VGGNet are only resized to 224 x 224,
256 x 256, 300 x 300, and 400 x 400 pixels, with the batch
sizes of 128 and 50, respectively. As it can be easily observed
from Fig. 6, the proposed SF-CNN models with pretrained
AlexNet, GoogleNet, and VGGNet exhibit better classification
accuracies when remote sensing images with larger size are fed
to the networks. In addition, Table II shows that the size of the
input images has a more significant impact on the classification
accuracy achieved by the SF-CNN on AlexNet, which suggests
that the AlexNet is more sensitive to the size of the input
images. Specifically, from Table II, the accuracies obtained on
the VGGNet in the categories, school (73.54—84.94 increase
with Pr = 20%) and center (92.31-97.75 increase Pr = 50%),
show significant improvements. Moreover, since the SF-CNN
model based on VGGNet extracts more representative features
than the other two considered models, it also exhibits the
highest classification accuracy among the three considered
models.

D. Comparisons With Other Methods

The proposed SF-CNN is expected to take better advantage
of input images with larger spatial resolution. In this section,
we compare the proposed approach with the baseline model
and also with some pretrained CNN models already available
in the literature [37], [38], which consider input images of
fixed size. In [38], two metric functions are adopted in a
new discriminative CNN (D-CNN) model to handle the prob-
lems of interclass similarity and intraclass diversity in remote
sensing scene classification, but the images considered in the
study must be artificially selected as a group of input data.
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TABLE 11
CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD OBTAINED BY USING INPUT IMAGES WITH DIFFERENT SIZES
Pr=20% Pr=50%
Models AlexNet GoogleNet VGGNet AlexNet GoogleNet VGGNet
Sizes 200 600 200 400 200 400 200 600 200 400 200 400
Airport 85.76  89.20 81.94 90.12 9292  93.34 91.11 96.34 97.22 97.13 98.89 99.50
Bare land 9274  95.12 96.77 97.65 98.19 97.12 97.42 97.09 96.13 97.97 98.71 98.77
Baseball field 93.75 97.12 97.73 92.93 99.07  96.53 98.18 98.76 100.00  99.00 99.09 99.21
Beach 95.94  96.21 95.63 97.44 98.96  98.69 100.00  99.17 100.00  99.91 100.00  100.00
Bridge 90.97 95.10 94.10 94.28 97.09  96.12 96.67 94.67 98.89 97.69 96.11 98.95
Center 79.81  80.25 80.77 81.17 81.46  81.19 93.08 91.98 91.54 90.68 92.31 97.75
Church 76.56  86.94 83.85 90.46 90.31 87.96 89.17 93.00 92.50 93.24 95.00 95.95
Commercial 7571  85.67 80.36 80.88 9235 91.37 92.57 99.10 95.43 97.62 98.29 98.92
Dense residential 92.99 91.42 92.99 93.87 97.47 93.54 98.05 95.77 97.07 97.47 97.07 97.19
Desert 95.42  89.54 94.17 93.38 93.54  94.52 97.33 95.00 96.00 97.24 98.67 99.39
Farmland 93.92 9354 94.26 94.12 98.52  97.58 96.22 93.15 97.84 97.21 97.84 98.44
Forest 98.00 98.96 99.00 99.88 99.21 98.94 95.20 95.67 98.40 99.91 96.80 98.46
Industrial 78.53  83.29 76.60 80.69 85.79  89.68 89.23 89.41 86.15 84.53 92.31 93.39
Meadow 96.88  98.62 98.21 98.20 97.53  96.82 98.57 98.96 99.29 99.20 99.29 98.63
Medium residential 82.33  84.87 82.76 86.22 88.57 87.87 95.86 97.60 95.86 96.46 97.93 98.68
Mountain 97.43  97.02 98.16 99.41 99.47  99.94 98.82 99.67 98.82 99.91 99.41 100.00
Park 82.86  84.60 87.50 83.38 86.64  90.30 78.86 86.53 89.14 87.91 90.29 92.06
Parking 99.04  98.68 99.36 99.60 99.57  99.62 99.49 99.67 100.00  99.91 100.00  100.00
Playground 92.57 97.26 97.97 98.85 97.51  98.59 95.68 96.97 97.84 99.91 99.46 98.98
Pond 94.05 95.50 95.83 96.42 96.94  96.37 96.67 96.81 98.10 98.96 98.57 99.11
Port 90.79  94.37 93.75 96.60 96.59  97.31 94.74 98.09 96.32 97.80 95.79 96.38
Railway station 81.25 87.46 87.02 88.38 92.52  89.36 90.77 96.59 95.38 95.29 93.85 93.14
Resort 69.40 75.82 67.67 70.28 76.93  69.77 74.48 85.19 77.93 78.53 79.31 81.44
River 90.85 93.56 91.77 95.70 95.94  96.59 92.20 96.26 96.10 96.50 96.59 97.13
School 59.17  70.79 68.33 72.96 73.54 8494 69.33 84.34 84.67 79.91 82.00 86.06
Sparse residential 95.83  97.88 97.08 99.63 93.96  96.19 98.67 97.00 98.67 99.24 99.33 97.45
Square 70.08  75.34 78.03 79.67 77.86  84.03 78.18 81.38 83.64 85.97 84.24 84.30
Stadium 94.40  96.94 93.10 94.85 92.88  93.04 93.10 92.77 96.55 97.15 95.86 96.61
Storage tanks 91.32 9545 95.49 97.06 97.09 97.86 93.89 98.00 97.22 98.24 97.22 98.95
Viaduct 97.62  99.07 98.81 100.00 9991  99.94 98.57 98.72 100.00 9991 99.52 100.00
AA 87.86  90.85 89.97 91.48 9294  93.17 92.74 94.79 95.09 95.35 95.66 96.50
OA 88.30  91.15 90.28 91.83 93.31  93.60 92.98 94.93 95.26 95.53 95.86 96.66
Kappa 87.88  90.83 89.93 91.51 93.06 93.38 92.73 94.76 95.09 95.37 95.71 96.54
TABLE III
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT .
METHODS ON THE UC MERCED LAND-USE DATA SET
Methods OA
Baseline 77.71
D-CNN with AlexNet 96.6740.10
MSCP+MRA with AlexNet  97.32+0.52
SF-CNN with AlexNet 96.984-0.24
D-CNN with GoogleNet 97.07+0.12
SF-CNN with GoogleNet 98.1040.25
D-CNN with VGGNet 98.9340.10
MSCP+MRA with VGGNet  98.4040.34 & T L o W
SF-CNN with VGGNet 99.05+0.27 T Ty " b e S Ny

In [37], a covariance-based multilayer fusion strategy (MSCP)
is proposed to exploit the highly correlated and complemen-
tary information from different layers using a multiresolution
analysis (MRA) to enhance the obtained results (we will refer
to this technique hereinafter as MSCP+MRA). All the results
obtained after our detailed comparison (including OAs and
standard deviations) are presented in Tables III-V, where we
can observe that the use of remote sensing images with higher
resolution helps the proposed SF-CNN model to outperform
the previously developed methods for scene classification.

Fig. 7. Confusion matrix for the UC Merced Land-Use data set using the
proposed SF-CNN pretrained with VGGNet (Pr = 80%).

1) Experiment 1: UC Merced Land-Use Data Set: First,
we perform an experiment with the UC Merced Land-Use data
set. As it can be observed from Table III, fine-tuning pretrained
CNN models offers a practical strategy for the classification
of small data sets. The proposed SF-CNN achieves the highest
classification performance with OA superior to 99%. Further-
more, all the samples in 17 categories are classified correctly.
As it can be observed in Fig. 7, there are four categories that
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Confusion matrix for the Aerial Image data set using the proposed SF-CNN with pretrained VGGNet. (a) Pr = 20%. (b) Pr = 50%.

Fig. 9.

TABLE IV

CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT
METHODS ON THE AERIAL IMAGE DATA SET

Pr

Methods 0% 0%
Baseline on AlexNet 86.86+0.47  89.531+0.31
D-CNN with AlexNet 85.624+0.10  94.4740.12
MSCP+MRA with AlexNet  90.654+0.19  94.1140.15
SF-CNN with AlexNet 91.15+£0.13  94.9340.13
Baseline on GoogleNet 86.59+0.29  89.64+0.36
D-CNN with GoogleNet 88.794+0.10  96.2240.10
SF-CNN with GoogleNet 91.83+£0.11  95.534-0.09
Baseline on VGGNet 83.444+0.40  86.3940.55
D-CNN with VGGNet 90.82+0.16  96.89+0.10
MSCP+MRA with VGGNet  92.21+0.17  96.5640.18
SF-CNN with VGGNet 93.60+0.12 96.66+0.11

are misclassified (i.e., buildings is misclassified as dense res-
idential, dense residential is misclassified as medium residen-
tial, mobile home park is misclassified as medium residential,
and sparse residential is misclassified as forest), with the test
errors that all equal to 0.05. Note that the number of test
samples for each category is 20 in the UCM21 data set. Thus,
actually, only one sample (20 x 0.05 = 1) is misclassified
for each of the four categories, and four samples in total are
misclassified for the whole test data set.

2) Experiment 2: Aerial Image Data Set: Our second exper-
iment is performed on the Aerial Image data set. Table IV
shows the OAs and standard deviations obtained by three
different pretrained models. In this case, we can observe
that the use of additional training samples is quite helpful
for improving the classification accuracies in each pretrained

Confusion matrix for the NWPU-RESISC45 data set using the proposed SF-CNN pretrained with VGGNet. (a) Pr = 10%. (b) Pr = 20%.

TABLE V

CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT
METHODS ON THE NWPU-RESISC45 DATA SET

Pr

Methods 0% 0%
Baseline on AlexNet 81.224+0.19  85.16+0.18
D-CNN with AlexNet 85.56+£0.20  87.24+0.12
MSCP+MRA with AlexNet  83.314+0.23  87.0540.23
SF-CNN with AlexNet 84.244+0.19  87.784+0.17
Baseline on GoogleNet 82.57+0.12  86.02+£0.18
D-CNN with GoogleNet 86.89+£0.10  90.49+£0.15
SF-CNN with GoogleNet 87.43+0.13  90.51£0.13
Baseline on VGGNet 87.57+£0.45  90.36%0.18
D-CNN with VGGNet 89.224+0.50  91.89+0.22
MSCP+MRA with VGGNet ~ 88.07+0.18  90.81+0.13
SF-CNN with VGGNet 89.89+0.16 92.551-0.14

CNN model. In this case, when Pr = 20%, our SF-CNN
obtains the state-of-the-art results, with OA above 91% on the
AlexNet and GoogleNet and OA above 93% on the VGGNet.
In addition, the use of images with higher spatial resolution
greatly improves the classification accuracies, especially under
limited training samples. Fig. 8 shows that the following
classes, resort, school, and square, are easily misclassified,
which is due to the high interclass similarities exhibited
by those classes. It should be noted that these images are
also difficult to label for humans. Although the classification
performance of the D-CNN based on VGGNet is better than
the one achieved by the proposed method, the D-CNN needs
to select image pairs as the input manually, which can be
very time-consuming. In our SF-CNN, the sequence of training
samples is just randomly shuffled.



6926

3) Experiment 3: NWPU-RESISC45 Data Set: Our third
experiment is conducted on the NWPU-RESISC45 data set.
As shown in Table V, the best classification performance is
obtained by the proposed SF-CNN method, which demon-
strates that higher spatial resolution in the input scenes helps
the CNN models to extract more discriminative features for
scene classification purposes. The proposed method is the
only one to obtain an OA above 92% with Pr = 20%.
As it can be observed in Fig. 9, some pairs of categories
(e.g., church and palace, rectangular farmland and terrace,
and lake and wetland) are easy to be confused, as a result
of their high interclass similarity. On the other hand, some
categories, such as freeway, palace, and thermal power station,
are hard to classify, owing to their high interclass diversity.
Specifically, the classification accuracy of the palace cate-
gory is below 75%, which hinders the OA obtained for the
NWPU-RESISC45 data set.

V. CONCLUSION

In this paper, a new SF-CNN model has been developed
for remotely sensed scene classification purposes. The main
advantage of the proposed method is that it allows the input
remote sensing images to be of arbitrary sizes and does not
require any resizing of such images prior to the processing.
This preserves key information in high spatial resolution
images, which is greatly beneficial to ultimately achieve better
classification performance. Specifically, the proposed method
first transfers the FCLs in the pretrained CNN model to
convolutional layers and then uses a GAP layer after the
final convolutional layer. Our experiments using three classic
pretrained CNN models on three publicly available data sets
verify the effectiveness of the proposed method when com-
pared with other state-of-the-art approaches.

As with any new approach, there are some unresolved
issues that may present challenges over time. In our method,
the input images in a minibatch must have the same size.
This is expected to be solved by setting the minibatch size
to 1 and fine-tuning the pretrained CNN models with batch
normalization layers, which is expected to require larger train-
ing and testing times that can be dealt with by developments
in the GPU technology. Moreover, the lack of a sufficient
number of labeled images is one of the biggest obstacles in
the domain of scene classification, which can easily lead to
the problem of overfitting for some complicated CNN models.
In this regard, we are working on a new design of CNN models
that will allow the input data to be multistructural, which may
be helpful for integrating already available off-the-shelf data
sets (and also for the collection of new data sets).

ACKNOWLEDGMENT

The authors would like to thank the editors and the anony-
mous reviewers for their valuable comments and suggestions,
which greatly helped them to enhance the technical quality
and presentation of this paper.

REFERENCES

[1] N. Longbotham, C. Chaapel, L. Bleiler, C. Padwick, W. J. Emery, and
F. Pacifici, “Very high resolution multiangle urban classification analy-
sis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1155-1170,
Apr. 2012.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 9, SEPTEMBER 2019

[2] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 2, pp. 865-873, Apr. 2015.

[3] J. Leitloff, S. Hinz, and U. Stilla, “Vehicle detection in very high
resolution satellite images of city areas,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 7, pp. 2795-2806, Jul. 2010.

[4] G.-S. Xia et al., “AID: A benchmark data set for performance evaluation
of aerial scene classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3965-3981, Jul. 2017.

[5] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10,
pp- 1865-1883, Oct. 2017.

[6] M. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis.,
vol. 7, no. 1, pp. 11-32, 1991.

[7]1 S. Bhagavathy and B. S. Manjunath, “Modeling and detection of
geospatial objects using texture motifs,” IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 12, pp. 3706-3715, Dec. 2006.

[8] Y. Yang and S. Newsam, “Comparing SIFT descriptors and Gabor
texture features for classification of remote sensed imagery,” in Proc.
15th IEEE Int. Conf. Image Process., Oct. 2008, pp. 1852—1855.

[9] J. Fan, T. Chen, and S. Lu, “Unsupervised feature learning for land-use
scene recognition,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4,
pp- 2250-2261, Apr. 2017.

[10] B. Tu, X. Zhang, X. Kang, G. Zhang, J. Wang, and J. Wu, “Hyper-
spectral image classification via fusing correlation coefficient and joint
sparse representation,” /[EEE Geosci. Remote Sens. Lett., vol. 15, no. 3,
pp. 340-344, Mar. 2018.

[11] H. Li, H. Gu, Y. Han, and J. Yang, “Object-oriented classification of
high-resolution remote sensing imagery based on an improved colour
structure code and a support vector machine,” Int. J. Remote Sens.,
vol. 31, no. 6, pp. 1453-1470, Mar. 2010.

[12] E. Aptoula, “Remote sensing image retrieval with global morphological
texture descriptors,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5,
pp- 3023-3034, May 2014.

[13] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

[14] B. Luo, S. Jiang, and L. Zhang, “Indexing of remote sensing images
with different resolutions by multiple features,” IEEE J. Sel. Topics Appl.
Earth Observat. Remote Sens., vol. 6, no. 4, pp. 1899-1912, Aug. 2013.

[15] N. He, L. Fang, S. Li, and A. J. Plara, “Covariance matrix based feature
fusion for scene classification,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., Jul. 2018, pp. 3587-3590.

[16] L. Fang, N. He, S. Li, P. Ghamisi, and J. A. Benediktsson, “Extinction
profiles fusion for hyperspectral images classification,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 3, pp. 1803-1815, Mar. 2018.

[17] P. Zhong and R. Wang, “Learning conditional random fields for classi-
fication of hyperspectral images,” IEEE Trans. Image Process., vol. 19,
no. 7, pp. 1890-1907, Jul. 2010.

[18] L. Fang, N. He, S. Li, A. J. Plaza, and J. Plaza, “A new spatial—
spectral feature extraction method for hyperspectral images using local
covariance matrix representation,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 6, pp. 3534-3546, Jun. 2018.

[19] Y. Yang and S. Newsam, “Geographic image retrieval using local
invariant features,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2,
pp. 818-832, Feb. 2013.

[20] G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei, “Remote sensing image
scene classification using bag of convolutional features,” IEEE Geosci.
Remote Sens. Lett., vol. 14, no. 10, pp. 1735-1739, Oct. 2017.

[21] S. Chen and Y. Tian, “Pyramid of spatial relatons for scene-level land
use classification,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4,
pp- 1947-1957, Apr. 2015.

[22] A. M. Cheriyadat, “Unsupervised feature learning for aerial scene classi-
fication,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 439451,
Jan. 2014.

[23] J. Zou, W. Li, C. Chen, and Q. Du, “Scene classification using local
and global features with collaborative representation fusion,” Inf. Sci.,
vol. 348, pp. 209-226, Jun. 2016.

[24] X. Lu, X. Zheng, and Y. Yuan, “Remote sensing scene classification
by unsupervised representation learning,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 9, pp. 5148-5157, Sep. 2017.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

[26] Z. Xu, L. Zhu, and Y. Yang, “Few-shot object recognition from machine-
labeled Web images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jul. 2017, pp. 5358-5366.



XIE et al.: SF-CNN FOR REMOTE SENSING SCENE CLASSIFICATION

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 6, pp. 1452-1464, Jun. 2018.

Y. Yu, Z. Gong, C. Wang, and P. Zhong, “An unsupervised convolu-
tional feature fusion network for deep representation of remote sensing
images,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 1, pp. 23-27,
Jan. 2018.

P. Zhong, Z. Gong, S. Li, and C.-B. Schonlieb, “Learning to diversify
deep belief networks for hyperspectral image classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 55, no. 6, pp. 3516-3530,
Jun. 2017.

X. Yao, J. Han, G. Cheng, X. Qian, and L. Guo, “Semantic annotation
of high-resolution Satellite images via weakly supervised learning,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3660-3671,
Jun. 2016.

R. Dian, S. Li, A. Guo, and L. Fang, “Deep hyperspectral image
sharpening,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5345-5355, Nov. 2018.

M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in Proc. Eur. Conf. Comput. Vis., Sep. 2014,
pp. 818-833.

L. Fang, G. Liu, S. Li, P. Ghamisi, and J. A. Benediktsson, “Hyperspec-
tral image classification with squeeze multibias network,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 3, pp. 1291-1301, Mar. 2019.

F. Zhang, B. Du, and L. Zhang, “Scene classification via a gradi-
ent boosting random convolutional network framework,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.

E. Othman, Y. Bazi, F. Melgani, H. Alhichri, N. Alajlan, and M. Zuair,
“Domain adaptation network for cross-scene classification,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 8, pp. 44414456, Aug. 2017.

E. Li, J. Xia, P. Du, C. Lin, and A. Samat, “Integrating multilayer
features of convolutional neural networks for remote sensing scene
classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10,
pp. 5653-5665, Oct. 2017.

N. He, L. Fang, S. Li, A. Plaza, and J. Plaza, “Remote sensing scene
classification using multilayer stacked covariance pooling,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 12, pp. 6899-6910, Dec. 2018.

G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learning
meets metric learning: Remote sensing image scene classification via
learning discriminative CNNSs,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 5, pp. 2811-2821, May 2018.

Z. Gong, P. Zhong, Y. Yu, and W. Hu, “Diversity-promoting deep
structural metric learning for remote sensing scene classification,”
IEEE Trans. Geosci. Remote Sens., vol. 56, no. 1, pp. 371-390,
Jan. 2018.

W. Zhao and S. Du, “Scene classification using multi-scale deeply
described visual words,” Int. J. Remote Sens., vol. 37, no. 17,
pp. 41194131, Sep. 2016.

F. P. S. Luus, B. P. Salmon, F. van den Bergh, and B. T. J. Maharaj,
“Multiview deep learning for land-use classification,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 12, pp. 2448-2452, Dec. 2015.

S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for VHR
remote sensing scene classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 8, pp. 4775-4784, Aug. 2017.

Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions
for land-use classification,” in Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst., Nov. 2010, pp. 270-279.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097-1105.

F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional
neural networks for the scene classification of high-resolution remote
sensing imagery,” Remote Sens., vol. 7, no. 11, pp. 14680-14707,
Nov. 2015.

G. Wang, B. Fan, S. Xiang, and C. Pan, “Aggregating rich hierarchical
features for scene classification in remote sensing imagery,” /EEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 9, pp. 41044115,
Sep. 2017.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. I[EEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1-9.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1-13.

C.-L. Zhang, J.-H. Luo, X.-S. Wei, and J. Wu, “In defense of fully
connected layers in visual representation transfer,” in Proc. Pacific Rim
Conf. Multimedia, Sep. 2017, pp. 807-817.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

6927

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jul. 2017, pp. 4700-4708.

D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep learning earth
observation classification using ImageNet pretrained networks,” IEEE
Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 105-109, Jan. 2016.

K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, “Towards better
exploiting convolutional neural networks for remote sensing scene
classification,” Pattern Recognit., vol. 61, pp. 539-556, Jan. 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/-S0031320316301509

N. He et al., “Feature extraction with multiscale covariance maps for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 57, no. 2, pp. 755-769, Feb. 2019.

J. Zhu, L. Fang, and P. Ghamisi, “Deformable convolutional neural
networks for hyperspectral image classification,” IEEE Geosci. Remote
Sens. Lett., vol. 15, no. 8, pp. 1254-1258, Aug. 2018. doi: 10.1109/
LGRS.2018.2830403.

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 4, pp. 640-651, Apr. 2017.

M. Lin, Q. Chen, and S. Yan. (Dec. 2013). “Network in network.”
[Online]. Available: https://arxiv.org/abs/1312.4400

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770-778.

Y. Hou, Q. Kong, J. Wang, and S. Li. (Nov. 2018). “Polyphonic audio
tagging with sequentially labelled data using CRNN with learnable gated
linear units.” [Online]. Available: https://arxiv.org/abs/1811.07072

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?” in Proc. IEEE 12th
Int. Conf. Comput. Vis., Sep./Oct. 2009, pp. 2146-2153.

W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and J. Jiao, “Image-
image domain adaptation with preserved self-similarity and domain-
dissimilarity for person re-identification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 994-1003.

M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Is object localization
for free?—Weakly-supervised learning with convolutional neural net-
works,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 685-694.

Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level
features for recognition,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., Jun. 2010, pp. 2559-2566.

J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1794-1801.

Y.-L. Boureau, J. Ponce, and Y. Lecun, “A theoretical analysis of feature
pooling in visual recognition,” in Proc. 27th Int. Conf. Mach. Learn.,
2010, pp. 111-118.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

Y. LeCun et al., “Handwritten digit recognition with a back-propagation
network,” in Proc. Adv. Neural Inf. Process. Syst., 1990, pp. 396-404.
W. Wan, Y. Zhong, T. Li, and J. Chen, “Rethinking feature distribution
for loss functions in image classification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 9117-9126.

Jie Xie (S’18) received the B.Sc. degree from
the Hunan University of Science and Technology,
Xiangtan, China, in 2015. He is currently pursuing
the Ph.D. degree in control science and engineering
with Hunan University, Changsha, China.

His research interests include hyperspectral image
processing, remote sensing images processing, and
deep learning.


http://dx.doi.org/10.1109/LGRS.2018.2830403
http://dx.doi.org/10.1109/LGRS.2018.2830403

6928

Nanjun He (S’17) received the B.S. degree from
the Central South University of Forestry and Tech-
nology, Changsha, China, in 2013. He is currently
pursuing the Ph.D. degree with the Laboratory of
Vision and Image Processing, Hunan University,
Changsha.

From 2017 to 2018, he was a Visiting Ph.D.
Student with the Hyperspectral Computing Labora-
tory, University of Extremadura, Ca ceres, Spain,
supported by the China Scholarship Council. His
research interests include remote sensing image
classification and remote sensing object detection.

Leyuan Fang (S’10-M’14-SM’17) received the
B.S. and Ph.D. degrees from the College of Electri-
cal and Information Engineering, Hunan University,
Changsha, China, in 2008 and 2015, respectively.

From 2011 to 2012, he was a Visiting Ph.D. Stu-
dent with the Department of Ophthalmology, Duke
University, Durham, NC, USA, supported by the
China Scholarship Council. Since 2017, he has been
an Associate Professor with the College of Electrical
and Information Engineering, Hunan University. His
research interests include sparse representation and
multiresolution analysis in remote sensing and medical image processing.

Dr. Fang received the Scholarship Award for Excellent Doctoral Student
granted by the Chinese Ministry of Education in 2011.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 9, SEPTEMBER 2019

Antonio Plaza (M’05-SM’07-F’15) received the
M.Sc. and Ph.D. degrees in computer engineer-
ing from the Hyperspectral Computing Laboratory,
Department of Technology of Computers and Com-
munications, University of Extremadura, Ca ceres,
Spain, in 1999 and 2002, respectively.

He is currently the Head of the Hyperspectral
Computing Laboratory. He has authored more than
600 publications, including over 200 JCR journal
papers (over 160 in the IEEE journals), 23 book
chapters, and around 300 peer-reviewed conference
proceeding papers. His research interests include hyperspectral data processing
and parallel computing of remote sensing data.

Dr. Plaza was a member of the Editorial Board of the /EEE Geoscience and
Remote Sensing Newsletter from 2011 to 2012 and the IEEE Geoscience and
Remote Sensing Magazine in 2013. He was also a member of the Steering
Committee of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS AND REMOTE SENSING (JSTARS). He was a recipient of
the Recognition of Best Reviewers of IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS in 2009, the IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING in 2010, the Recognition as an Outstanding Associate
Editor of the IEEE ACCESS in 2017, the Best Column Award of the IEEE
Signal Processing Magazine in 2015, the 2013 Best Paper Award of the
IEEE JSTARS, the Most Highly Cited Paper Award of the Journal of
Parallel and Distributed Computing from 2005 to 2010, and the Best Paper
Awards from the IEEE International Conference on Space Technology and the
IEEE Symposium on Signal Processing and Information Technology. He has
reviewed more than 500 manuscripts for over 50 different journals. He has
guest edited 10 special issues on hyperspectral remote sensing for different
journals. He served as an Associate Editor for the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING from 2007 to 2012. He is currently an
Associate Editor of the IEEE ACCESS. He served as the Director of Education
Activities for the IEEE Geoscience and Remote Sensing Society (GRSS) from
2011 to 2012 and the President of the Spanish Chapter of the IEEE GRSS from
2012 to 2016. He served as the Editor-in-Chief of the IEEE TRANSACTIONS
ON GEOSCIENCE AND REMOTE SENSING from 2013 to 2017.



