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Abstract— Deep neural networks (DNNs), including convolu-
tional neural networks (CNNs) and residual networks (ResNets)
models, are able to learn abstract representations from the input
data by considering a deep hierarchy of layers that perform
advanced feature extraction. The combination of these models
with visual attention techniques can assist with the identification
of the most representative parts of the data from a visual
standpoint, obtained through more detailed filtering of the
features extracted by the operational layers of the network. This
is of significant interest for analyzing remotely sensed hyper-
spectral images (HSIs), characterized by their very high spectral
dimensionality. However, few efforts have been conducted in the
literature in order to adapt visual attention methods to remotely
sensed HSI data analysis. In this paper, we introduce a new visual
attention-driven technique for the HSI classification. Specifically,
we incorporate attention mechanisms to a ResNet in order to
better characterize the spectral–spatial information contained in
the data. Our newly proposed method calculates a mask that
is applied to the features obtained by the network in order
to identify the most desirable ones for classification purposes.
Our experiments, conducted using four widely used HSI data
sets, reveal that the proposed deep attention model provides
competitive advantages in terms of classification accuracy when
compared to other state-of-the-art methods.
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I. INTRODUCTION

HYPERSPECTRAL image (HSI) classification is a very
active research field in remote sensing and earth obser-

vation [1], [2]. This is due to the excellent characterization
that HSI instruments can provide for large areas on the
surface of the earth. HSI data are often collected by imaging
spectrometers mounted on aerial or satellite platforms and
comprise hundreds of images at different (continuous and
narrow) wavelengths, usually from the visible to the near-
infrared regions of the electromagnetic spectrum. As a result,
high-dimensional data cubes are obtained, in which each pixel
captures the emitted, reflected, and transmitted light over the
observed land cover materials. Each pixel (vector) in the
data cube can be interpreted as a spectral signature or fin-
gerprint that uniquely characterizes the observed materials
of the target area [3]. Such data cubes provide a wealth of
spectral and spatial information, a property that is very useful
for monitoring the surface of the earth [4], [5] in a wide
range of applications, such as precision agriculture [6]–[8],
environmental and natural resources management [9],
surveillance [10]–[12], and others [13].

HSI classification has been usually tackled as an opti-
mization problem, trying to assign each pixel of the scene
to a certain land cover class by adapting traditional image
analysis methods to HSI data [14]. For instance, standard
machine learning methods assume that the HSI data cube
is a collection of spectral vectors with no spatial arrange-
ment, exploiting only the spectral information to discriminate
and classify the pixels. Several unsupervised and supervised
spectral-based approaches have been applied to interpret the
HSI data, including k-means clustering [15], k-nearest neigh-
bors (KNNs) [16], support vector machines (SVMs) [17], [18]
and other kernel-based methods [19], [20], logistic regression
(LR) [21], or random forest (RF) [22], among many others.
However, the classification of HSI data involves certain diffi-
culties not to be found in other kinds of image data (in addition
to the huge amount of information contained in HSI data
cubes [2]). Specifically, traditional supervised classification
approaches are largely affected by the curse of dimensional-
ity [23], which may hamper the accuracy of the classifier when
the number of available labeled training samples is limited in
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relation to the (high) dimensionality of the data. This is also
due to the high cost and effort involved in expert annotation
of labeled data, a fact that can result in an undercomplete
training process that is prone to overfitting (this is also known
as the Hughes phenomenon [24]). Moreover, HSI data sets
present high intraclass variability and interclass similarity,
resulting from atmospheric interferers, spectral variability, and
the configuration of the sensor. These aspects bring additional
difficulties when characterizing the data and call for new
techniques that can better exploit the rich spatial and spectral
information contained in HSI scenes.

To address some of the aforementioned issues, several deep
neural network (DNN) models have been developed in the lit-
erature [25]. These flexible architectures, composed by a stack
of layers, allow multiple techniques to include and process
not only the spectral signatures but also the spatial-contextual
information contained in the captured scenes. Based on the
idea that spatially adjacent pixels often belong to the same
class, these classifiers take advantage of the spatial information
to reduce sample variability. In fact, it is well-known that the
extraction of spectral–spatial features is very useful to improve
the classification process, helping to reduce label uncertainty
and intraclass variance. As a result, joint spectral–spatial meth-
ods can often perform better than purely spectral- or spatial-
based ones. However, in deep learning (DL) methods,
there is a problem of how to fuse the spectral and spatial
information. Focusing on stacked autoencoders (SAEs) [26]
and deep belief networks (DBNs) [27], we can find several
techniques that concatenate the spectral signatures and the
spatial information extracted from neighboring pixels by tak-
ing advantage of simple dimensionality reduction methods,
such as the principal component analysis (PCA) [28]–[31]
or more sophisticated methods, such as superpixels [32],
guided filtering [33], or morphological profiles [34], [35],
among others. Traditional fully connected architectures admit
vector inputs, so the spatial structure is usually lost. In this
sense, convolutional neural networks (CNNs) [36] are the
powerful tool for the analysis of HSI images due to their
capacity to accurately characterize both the spectral-
and spatial-contextual information contained in HSI data
cubes [37], being able to effectively extract the features with
a high-level of abstraction from the raw data and achieving
excellent classification results [38].

However, DL-based models are not totally immune to the
curse of dimensionality and the Hughes phenomenon. In fact,
CNNs tend to quickly overfit when a few labeled samples
are available. To overcome this limitation, several techniques
have been developed, including: 1) semisupervised and active
learning (AL) techniques [39], able to deal with overfitting
when very few training samples are available; 2) residual learn-
ing [e.g., using residual networks (ResNets)] [40], [41] and
dense connections [e.g., using dense networks (DenseNets)]
[42], [43], which can alleviate the loss of information and
vanishing gradient problems of very deep and complex archi-
tectures; and 3) the development of new information routing
techniques, such as capsule modules [e.g., using capsule
networks (CapsNets)] [44], [45]. Despite these advances,
CNN-based models still present the main limitation when

dealing with HSI data. In fact, they can be hindered by the
mode operation of their own convolution filters that treat
the input content completely equally, while probably not all
spectral–spatial information provided by the input hyperspec-
tral pixels are equally interesting, informative, relevant, and/or
predictive for classification purposes [46].

In the area of computer vision, several efforts are now
being made to improve DL techniques, overcoming the equal
treatment of the convolution kernel by incorporating visual
attention mechanisms. The goal of these techniques is to
explore, in detail, the objects or regions that stand out in a
given scene [47], as opposed to convolutional methods, whose
kernels treat equally the whole content in the image. The
main idea is to simulate the human behavior, as we try to
understand an image by selecting a subset of features that
contain the most relevant characteristics instead of treating
the full scene equally. In fact, the human brain focuses on the
most valuable and informative stimulus perceived by the eyes,
ignoring other irrelevant information. Such visual attention
mechanisms are based on two kinds of components [48]:
1) bottom-up (stimulus-driven) components that are tra-
ditionally related with automatic/involuntary processing of
salient visual features in raw sensory information and are
performed in a feedforward way and 2) top-down (goal-
oriented) components that modulate bottom-up component
behavior through voluntary attention to certain characteristics,
objects, or regions in the space. The study of these com-
ponents, together with their characteristics, has resulted in a
great variety of attention-driven techniques [49], turning visual
attention into a hot research topic.

In the remote sensing literature, several attention-driven
techniques have been developed for detecting salient
regions [50]–[56] and target objects [57]–[60]. However, their
application to HSI data has been quite sparse [61], [62].
Although the adaptation of visual attention techniques to deep
models is demonstrating excellent performance in several clas-
sification tasks [63]–[65], there is still room for contributions
in the area of HSI classification.

In this paper, we develop a new spectral–spatial visual
attention-driven technique for HSI classification. Our newly
developed technique combines the use of advanced visual
attention mechanisms with powerful feature extraction
approaches based on DNNs for spectral–spatial HSI classi-
fication. As a case study, we introduce visual attention mech-
anisms in the ResNet architecture (A-ResNet). The translation
of a visual attention working mode to DNNs for HSI data
processing allows to increase the sensitivity of the network
to those features that contain the most important and useful
information for classification purposes. In this regard, the main
innovative contributions of our work can be summarized as
follows.

1) The development, for the first time in the literature,
of a visual attention-driven mechanism (incorporated
into an A-ResNet) for spatial–spectral HSI classification.
This is done by introducing a dual data-path attentional
module as the basic building module, considering both
bottom-up and top-down visual factors to improve the
feature extraction capability of the network.
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2) A detailed comparison between our attention-driven
model and traditional pixel-based machine learning and
spectral–spatial DL-based techniques for HSI classifica-
tion, demonstrating that the proposed model is able to
outperform the current state-of-the-art classifiers.

3) A study of how the performance of the considered classi-
fiers is affected by perturbations in the data, introducing
controlled noise in the samples. To this end, four well-
known and publicly available HSIs are considered in our
experiments: Indian Pines (IP), University of Pavia (UP),
Salinas Valley (SV), and University of Houston (UH).

The remainder of this paper is organized as follows.
In section II, we introduce the basic principles of CNNs and
the ResNet model. Section III describes, in detail, our newly
proposed A-ResNet methodology. Section IV discusses our
experimental results. Finally, Section V concludes this paper
with some remarks and hints at plausible future research lines.

II. RELATED WORK

A. Convolutional Neural Networks

DNNs are characterized by a hierarchical structure com-
posed by a deep stack of processing layers, placed one after
the other. Such deep structure allows these models to learn
representations of the original input data with multiple levels
of abstraction, from the most concise ones (at the first layers)
to the most abstract ones (at the end of the architecture). Such
multilevel representations of the data allow for a powerful
mechanism of feature extraction, in which each layer is able
to discover (or reinforce) different relations, distributions, and
structures in the data, supported by features extracted by
previous layers. In this sense, the architecture of CNNs is
based on receptive fields and follows the behavior of neurons
in the primary visual cortex of a biological brain [66], [67].
These models have become a state of the art in remote sensing
data analysis, outperforming many algorithms [68]. CNNs are
typically composed of two main parts: 1) the feature extractor
net, and 2) the classifier.

The feature extractor is composed by several kinds of
n-dimensional blocks or layers, depending on how the infor-
mation is used and how it is processed by these blocks.
An HSI data set X can be seen as a collection of spectral
vectors X ∈ R

(n1·n2)×nbands , where n1 ·n2 denotes the number of
spectral pixels in the scene and nbands is the number of spectral
bands. Each pixel in the scene is given by xi ∈ R

nbands =
[xi,1, xi,2, . . . xi,nbands ]. CNN models composed by 1-D blocks
process only the spectral information in the data and are also
known as spectral-based CNNs. These models exhibit similar
disadvantages as traditional pixel-based processing methods.
On the contrary, if we apply a spectral dimension reduction
technique over X, for example, PCA [69], [70], and retain only
the first PC, the HSI can be treated as a 2-D matrix of spatial
information X ∈ R

n1×n2 , where n1 ×n2 denotes the number of
rows and columns in the scene. Traditional CNNs employ 2-D
blocks to process the spatial information contained in the input
data, which, in RGB data, corresponds with the whole image.
However, to process the HSI X using both spatial and spectral
information, we need to extract, for each pixel xi, j ∈ R

nbands ,

a neighborhood window or spatial patch pi, j ∈ R
d×d , which

comprises the set of d × d pixels that surround the central
sample xi, j . The usual way to perform the classification is
to assign the label yi, j of the central pixel xi, j to the entire
patch pi, j . Although such a spatial-based classification strategy
can achieve good results, the loss of significant spectral infor-
mation is often critical in many applications [37], [38]. A third
way to classify the HSI scene X is to exploit the spatial-
contextual information together with the full or filtered spectra,
retaining the full spectral information from the original bands
(or a significant percentage of it, by means of an appropriate
number of principal components) and creating spectral–spatial
patches or data subcubes pi, j ∈ R

d×d×nchannels . In this sense,
the spectral–spatial CNN model allows to treat the data in
3-D fashion by combining both sources of information (spatial
and spectral) in a most natural and simple way, by considering
3-D subblocks extracted from the input data cube.

Using spectral–spatial patches as inputs, the feature extrac-
tor net of the spectral–spatial CNN model hierarchically
applies three kinds of operations: 1) convolution; 2) nonlinear
activation; and 3) donwsampling by pooling. The convo-
lutional layer is the main processing block, composed by
K filters defined by their receptive field. In this sense, regard-
ing the dimension of the filters, the CNN can be understood as
1-D, 2-D, or 3-D depending on whether its receptive field is
of dimensions K ×q , K ×k ×k, or K ×k ×k ×q , respectively,
being q and k the spectral and spatial components of the kernel
(in this context, the proposed model implements a spectral–
spatial convolutional-based model with 2-D kernels). In fact,
the convolutional layer can be interpreted as a sliding-window
method, where the windows/kernels of the block slide over
the spatial and spectral dimensions of the input volume using
a stride s(l)

X(l) = W(l) ∗ X(l−1) + b(l) (1)

where X(l) is the output volume of the lth layer, composed
by K feature maps and obtained as the convolution (∗) of the
input volume X(l−1) and the layer weights W(l) and biases b(l).
More specifically, each feature of X(l) in (1) is obtained as
follows:

x (l)z
i, j = (W(l) ∗ X(l−1) + b(l))i, j

=
k(l)−1∑

î=0

k(l)−1∑

ĵ=0

(
x(l−1)

(i·s(l)+î),( j ·s(l)+ ĵ)
· w(l)

î, ĵ

) + b(l) (2)

where x (l)z
i, j ∈ R is the (i, j)th element of the zth feature map

of X(l) (with z = 0, 1, . . . , K (l)−1 and K (l) being the number
of filters of the layer), x(l−1)

i, j ∈ R
K (l−1)

is the (i, j)th element

of the input volume X(l−1), w(l)
î, ĵ

is the (î, ĵ)th weight of the

layer weights W(l), b(l) denotes the biases, and s(l) is the
stride, being k(l) × k(l) the receptive field of the lth layer.
Fig. 1 presents a graphical visualization of the operations
conducted by (1) and (2).

Convolutional blocks extract the features contained in the
input volume by applying a linear dot product. In order to
learn nonlinear relationships present in the data, a nonlinear
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Fig. 1. Visualization of a convolutional layer operation with 2-D kernel.
Unlike fully connected layers, the lth convolutional block presents local
connectivity to small regions of the whole input volume, that is, the zth
filter’s weights W(l) are applied over windows of the input volume X(l−1) ∈
R

n(l−1)
1 ×n(l−1)

2 ×K (l−1)
defined by the receptive field of size k(l) ×k(l), taking

into account the full depth K (l−1) of the input data (highlighted as green and

yellow patches), slipped by a stride determined by s(l). It can be observed
that the zth kernel produces, for each region, a scalar value (represented as
a smaller rectangle) that is allocated into the zth feature map, giving, as a

result, an output volume X(l) ∈ R
n(l)

1 ×n(l)
2 ×K (l)

that comprises K (l) feature
maps of n(l)

1 × n(l)
2 features each.

activation function is adopted before sending the resulting out-
put volume to the following layer X(l) = H(X(l)), being H(·)
usually implemented by the rectified linear unit (ReLU) [71].
In addition, with the aim of reducing the spatial dimensions of
the output volume and also to summarize the obtained features
and obtain a certain invariability to geometric transformations,
a nonlinear subsampling strategy is implemented by the pool-
ing layer. In fact, the pooling layer applies a sample-based
discretization process, selecting from small windows of the
input volume those values that satisfy the selection criteria,
being the max-pooling one of the most widely used methods
for this purpose. It simply slides a spatial kernel k ×k over the
input volume, selecting the maximum value for each region,
as the following equation indicates:

pool(l)z
i, j = max

(a,b)∈Ri, j

x (l)z
a,b (3)

where pool(l)z
i, j represents the (i, j)th output value of the

pooling associated with the zth feature map and x (l)z
a,b denotes

the (a, b)th element contained by the pooling region
Ri, j that encapsulates a spatial receptive field around the
position (i, j) [72].

At the end of the feature extractor net, a final output X(l) is
obtained that contains an abstract representation of the original
input data. Usually, this output is flattened in order to allow the
classifier to perform the final categorization of the input data.
Normally, the classifier is implemented by one or more fully
connected layers of a multilayer perceptron (MLP), creating
an end-to-end structure.

B. Residual Neural Networks

CNNs present several problems when processing HSI data.
In particular, they tend to overfit when very few labeled
samples are available to perform the training procedure, and

Fig. 2. Graphic visualization of a standard residual unit. The final output
volume is obtained as the aggregation of the original input volume X(l−1)

and the resulting output volume of the hidden stack of layers, G(X(l−1)),
where G(·) refers to the convolutions, normalizations, pooling steps, and
activation functions applied along the stack over the input data. As a result,
the architecture reinforces the learning process of the entire model by reusing
previous information in the following layers: X(l) = G(X(l−1)) + X(l−1) .

they also can suffer from loss of information when deep
structures are implemented. To overcome the first problem,
several strategies have been developed in the literature, such
as the use of data regularization and dropout techniques, data
augmenting, or semisupervised and AL approaches. However,
the loss of information is produced by the vanishing gradi-
ent problem [73]. In this case, for very deep architectures,
the errors become quite hard to propagate back correctly,
and the gradient signal tends to zero [74]. Several strategies
have also been developed to deal with this problem, such as
data normalization techniques [75] or new optimizer/activation
functions [76], [77]. However, the accuracy of deep CNNs still
can saturate due to the complexity of the mapping function
of the convolutional blocks and the hard learning of these
functions [78]. In this sense, the architectural modifications
introduced by ResNets can improve the learning process of
convolutional layers by learning small residuals and adding
them to the input volume of each layer, instead of transforming
the whole input volume directly. In order to differentiate the
CNN and ResNet models, we note that the main building block
of a CNN is composed by the convolutional layer and the
nonlinear activation function, so (1) with H(·) can be rewritten
as

X(l) = H(W(l) ∗ X(l−1) + b(l))

simplifying X(l) = H(X(l−1)) (4)

Equation (4) indicates that the CNN hierarchically extracts
the features, processing them by the successive layers that
compose the architecture. Instead of that, the ResNet uses the
residual unit as a building block [79] and is composed by a
stack of several layers, normally convolutional layers stacked
with ReLUs and batch-normalization layers, and with two
types of connections allowing different kinds of data streams
(see Fig. 2).

1) The traditional forward connection that connects the
current layer with the previous and the following ones,
extracting from the original input volume X(l−1) a repre-
sentation G(X(l−1),W(l),B(l)), where G(·) approximates
the residual function referring to those operations that



HAUT et al.: VISUAL ATTENTION-DRIVEN HSI CLASSIFICATION 8069

Fig. 3. Standard architecture of the proposed network with the network’s head, composed by a convolutional layer C(1) that presents the input volume
data X, to the network’s body, composed by the residual attention module, A(2) , whose output is finally vectored through an average pooling and sent to the
network’s tail, composed by one fully connected layer that performs the final classification. Two branches, trunk and mask, compose the attentional module:
the trunk branch (upper path), composed by t residual blocks that perform feature extraction from the data, and the mask branch (bottom path), composed
by a symmetrical downsampler–upsampler structure, in which r residual blocks are allocated (in between each downsampling/upsampling step) to extract
information from the current scale, adding a shortcut connection to link the downsampling step (/2) with its corresponding upsampling (×2) counterpart to
combine both kinds of data (instead of the bottleneck part, where only 2 ·r residual blocks are stacked one after the other), and followed by a sigmoid function
to prepare the mask, which is applied over the trunk feature data. The resulting output is sent to a final group of p residual blocks located at the end of the
module.

are applied over the input data by all the stacked layers
of the residual unit, which depends on the weight
matrices W(l) = {W(i)}N−1

i=0 of the N convolutional
layers associated with the lth residual unit, and the
corresponding biases B(l) = {b(i)}N−1

i=0 .
2) The shortcut connection that communicates the original

input volume with the end of the residual unit, per-
forming an identity mapping that allows to reuse the
previous information to reinforce the learning of the
residual block.

At the end, residual learning is introduced into (1) as

X(l) = G(X(l−1),W(l),B(l)) + X(l−1)

simplifying: X(l) = G(X(l−1)) + X(l−1) (5)

where the previous features are exploited once again by the
next unit, which reinforces the learning and allows the gradient
to be transmitted.

III. ATTENTIONAL RESIDUAL NETWORK FOR

HYPERSPECTRAL IMAGE CLASSIFICATION

The combination of convolutional kernels and residual
connections makes the ResNet a very powerful and efficient
model for image analysis, in general, and for HSI processing,
in particular. Based on this architecture, this section develops a
new architecture for HSI classification that incorporates visual
attention mechanisms in order to extract more discriminatory
features, improving the model performance and enhancing its
accuracy. In this sense, analogous to the original ResNet,
the proposed spectral–spatial A-ResNet for HSI classifica-
tion adopts a basic building block, called attentional mod-
ule [65], that contains two data paths or branches: 1) the trunk
branch and 2) the mask branch. Fig. 3 presents the overall
architecture of the proposed attentional neural network for
HSI data classification. Focusing on the attentional module,
the specifications of each part are discussed in detail in the
following.
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A. Attentional Module → Trunk Branch

The attentional module can be denoted as A(l), with
l being the number of layers, and receives the volume X(l−1) as
input data, which is forward-propagated through two different
paths, being the trunk branch the simplest and easiest one
to implement. It is composed by t residual blocks, which
are stacked one by one, performing a feature extraction and
processing task. These residual blocks can be implemented fol-
lowing previous works, such as the basic residual block and its
bottleneck implementation [78], the wide residual block [80],
and the pyramidal residual block and its bottleneck
variation [41], [81], among other complex structures [79],
[82], [83]. The obtained features can be denoted as X(ltrunk) =
trunk(X(l−1)) and contain the high-level data representation
of the module. At this point, and following visual attention
principles, the next step is to single out the most rele-
vant features from all of the available information contained
into X(ltrunk), masking the least interesting parts for the learning
procedure. In this sense, an attention mask X(lmask) must be
calculated and applied over the processed features of the trunk
branch.

B. Attentional Module → Mask Branch

As mentioned earlier, the input module X(l−1) is propagated
through two paths, with the mask branch being in charge of
calculating and applying the attention mask X(lmask) over the
output features obtained by the trunk branch, X(ltrunk). In fact,
its goal is to obtain a weight matrix with the same dimensions
of X(ltrunk), which softly weights the trunk’s output features to
highlight the most important ones, simulating the elementwise
soft attention mechanism.

In order to obtain the final X(lmask), the mask branch applies
a network architecture over X(l−1). It is based on a spa-
tial downsampler–upsampler structure with r residual blocks,
allocated between each pair of downsampling/upsampling
steps and with skip connections between each downsampling
step and its upsampling counterpart (similar to the hour-
glass network [84]), following the anatomical connections
of cortical processing [85], where feedforward connections
transform the input into fast behavioral responses, whereas
skip/feedback connections modulate these responses using
perceptual context or attention. Moreover, each sampling step
(coupled with its corresponding r residual blocks) provides
semantic information about the input data, from low-level
cues (edges, color, and intensity) to high-level cues that,
coupled with the forward connections (aimed at collecting
global information from the data) and skip connections (which
allow to combine multiscale data taking into account global
information and original features) simulate the bottom-up and
the top-down attention selections of the visual cortex [86].
In this sense, the downsampler–upsampler structure stacks as
many downsampling/upsampling steps as possible, until the
smallest feasible spatial resolution of the data is reached.

In the attention module A(l), the naive application of the
attentional mask over the trunk features in the spatial–spectral
domain gives the following output:

X(l) = X(lmask) · X(ltrunk). (6)

However, (6) presents several limitations. Considering the
mask X(lmask) as a collection of values in the range [0, 1], its
application over trunk features may degrade them in deeper
layers. Also, if the mask contains in most of its elements a
value that is equal or close to 0, it may disregard relevant
features of the trunk branch. In order to overcome these
problems, (6) is reformulated as follows:

X(l) = (1 + X(lmask)) · X(ltrunk). (7)

In this case, (7) allows propagating the characteristics
extracted from the trunk branch, where the mask branch sup-
presses the least significant features to facilitate the detection
of important features. The combination of both allows to single
out the salient features.

Finally, the masked output volume is passed through a tail
composed by p residual blocks that perform a final feature
extraction step, taking into account the features that have been
highlighted in the previous phase.

C. Proposed Network Topology

The proposed network for spectral–spatial HSI data clas-
sification has been developed to work with 3-D subcubes
pi, j R

d×d×nchannels extracted around each spectral pixel xi, j

of the original scene, taking d = 11 as the spatial height
and width dimensions [40]. These input patches are passed
through the network, which is composed by the network’s
head, attentional body, and classification tail (see Fig. 3) in
order to extract relevant features and perform their corre-
sponding classification. The head of the network is given by a
convolutional layer C(1) with batch-normalization and ReLU,
which prepares the data to be processed by the rest of the
network, followed by one or several attentional modules,
depending on the complexity of the problem. As mentioned
earlier, the lth attentional module A(l) is, in turn, composed
by several residual blocks ∗ R(l)

i (see Fig. 3):
1) t residual blocks, denoted as (t)R(l)

i , with i = 1, . . . , t ,
for extracting features in the trunk branch;

2) r(2DU) residual blocks, denoted as (m) R(l)
i , being DU

the number of down sampling/upsampling steps for
processing multiscale data and obtain the attention
module mask. For instance, in Fig. 3, with DU = 2
downsampling/upsampling steps, there are 4r residual
blocks

3) p residual blocks denoted as p R(l)
i with i = 1, . . . , p,

located at the end of the module for postprocessing the
filtered data.

In total, the attention module is composed by t+r(2DU)+ p
residual blocks, being t = 2, r = 1, and p = 1, while
DU depends on the spatial size of the input volume. The
residual block architecture of the trunk branch is composed by
three subblocks of convolutional layers, batch-normalization,
and ReLU (see Fig. 4), whose kernels are defined in Table I,
creating a spectral-bottleneck architecture in order to better
analyze the spectral–spatial domains [87], while the residual
blocks of the mask and the ending of the module follow the
simple residual unit designed in [78]. Kernels are defined
in Table I. As we can observe, each kernel performs a
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Fig. 4. (Top) Graphic visualization of the architecture of the internal residual
blocks that conform the trunk branch of the attentional module and (Bottom)
those that conform the mask branch. Convolutional details are given in Table I.

TABLE I

BASIC ARCHITECTURE OF THE RESIDUAL BLOCKS OF THE TRUNK

AND MASK BRANCHES, WHERE KMIDDLE = K INPUT /2

convolution operation using windows of size 3 × 3, with
padding p = 1. In this context, the output of the attention
module, X(l), maintains the same spatial–spectral dimensions
as the input, X(l−1), in the sense that all its residual blocks
keep the volume dimensions constant. This allows us to add a
lot of flexibility to the model, which is able to stack modules
one after another (as plug-&-play structures). In order to avoid
the overfitting problem caused by a large number of parameters
that must be trained, we propose a simple architecture with one
attentional module. Details can be found on Table II.

Furthermore, the network has been optimized using the
Adam optimizer [76] with 300 epochs, where the learning
rate decays half of its value on epochs 50, 100, and 200,
using a batch size of 100. Also, nchannels = 40 principal
components have been considered as the input spectral bands,
being d = 11.

IV. EXPERIMENTAL RESULTS

A. Experimental Configuration

With the aim of testing the performance of the proposed
attentional network for spectral–spatial HSI classification,
a battery of experiments has been performed on a desktop

TABLE II

TOPOLOGY OF THE PROPOSED ATTENTION NETWORK, WHERE nCHANNELS

INDICATES THE NUMBER OF CONSIDERED SPECTRAL BANDS

computer equipped with a sixth-generation Intel Core
i7-6700K processor, with 8M of cache, the clock speed
of 4.20 GHz, and four cores/eight-way multitask processing.
From the point of view of memory, it is equipped with 40 GB
of DDR4 RAM, with a serial speed of 2400 MHz, and a
Toshiba DT01ACA HDD with 7200 rpm and 2 TB of storage
capacity. Also, it is equipped with a graphics processing unit
(GPU) NVIDIA GeForce GTX 1080 with 8-GB GDDR5X
of video memory and 10 Gb/s of memory frequency, and an
ASUS Z170 programming motherboard. The operating system
is Ubuntu 18.04. In order to efficiently implement the proposed
approach, our models have been parallelized on the available
GPU using Pytorch.

B. Hyperspectral Data Sets

Four public and widely used HSI data sets have been
considered in our experiments: IP, UP, SV, and the Kennedy
Space Center (KSC). Table III shows, for each data set, its
corresponding ground-truth with the number of samples per
class. In the following, we summarize the characteristics of
each data set.

1) IP data set was collected by the Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) [88] in 1992,
over an agricultural area in Northwestern Indiana
using 145 × 145 pixels with a spatial resolution
of 20 meters/pixel (m/p) and 224 spectral bands in the
wavelength range from 0.4 to 2.5 μm. After deleting
24 bands due to water absorption and null values, a total
of 200 spectral bands are considered for experimental
purposes. The ground-truth is divided into 16 different
classes (see Table III).

2) UP data set was collected by the reflective optics system
imaging spectrometer (ROSIS) [89] in 2002, over the
Engineering School at the UP, Northern Italy, using
610 × 340 pixels with a spatial resolution of 1.3 m/p
and 103 spectral bands in the wavelength range from
0.43 to 0.86 μm. The ground-truth is divided into nine
different classes (see Table III).
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TABLE III

NUMBER OF SAMPLES OF THE IP, UP, SV, AND UH DATA SETS

3) SV data set was collected by the AVIRIS sensor in 1998,
over an agricultural field in Salinas Valley, CA, USA,
using 512 × 217 spectral samples with 224 spectral
bands (20 of them were discarded due to water absorp-
tion and noise). The ground-truth contains 16 classes
(see Table III).

4) UH data set [90] provides an interesting benchmark, first
presented by the IEEE Geoscience and Remote Sensing
Society Image Analysis and the Data Fusion Technical
Committee during the 2013 data fusion contest [91].
It was gathered by the Compact Airborne Spectrographic
Imager (CASI) in June 2012, over the campus of the
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University of Houston and the neighboring urban area,
forming a data cube of dimensions 349 × 1905 × 144,
with a spatial resolution of 2.5 m and spectral infor-
mation captured in the range from 0.38 to 1.05 μm,
containing 15 ground-truth classes divided in two cate-
gories: training (top UH map in Table III) and testing
(bottom UH map in Table III).

C. Results and Discussion

In order to test the performance of proposed attention-
guided network for spectral–spatial HSI data classification,
four main experiments have been carried out.

1) Our first experiment performs a comparison between
the proposed attention-driven network and seven dif-
ferent and widely used HSI classifiers available in the
literature: 1) RF; 2) multinomial LR (MLR); 3) SVM;
4) MLP; 5) spectral CNN (CNN1D); 6) spatial CNN
(CNN2D); and 7) spectral–spatial ResNet. In this con-
text, the four HSI data sets described in Section IV-B
have been used. We extracted patches of size
11 × 11 × 40. For the IP scene, we used 15% of the
available labeled data per class for training (and the
rest of the available labeled data for testing). For the
UP and SV scenes, we used 10% of the available labeled
data for training. Finally, for the UH scene, we used the
available (fixed) training set (see Table III).

2) Our second experiment expands the initial comparison
carried out in the first experiment using different
classifiers and particularly focusing on different
spectral–spatial methods carried out on the UP data
set with the fixed training set adopted in [92]. In this
case, the following classifiers have been considered:
1) Markov random field combined with the Gaussian
class-conditional model (MRF-Gauss); 2) contextual
SVM (CSVM) [93]; 3) CNN with extinction profiles
(EP-CNN) [94]; 4) CNN with a previously applied
PCA; 5) CNN with extended morphological profiles
(EMP-CNN); and 6) CNN with Gabor filter
(Gabor-CNN). Focusing on convolutional models,
the EP-CNN is fed by patches of size 27 × 27 × nbands,
while the proposed attentional model, PCA-CNN,
EMP-CNN, and Gabor-CNN employ the input patches
of size 27 × 27 × 3.

3) Our third experiment performs a comparison between
the original spectral–spatial ResNet and the proposed
A-ResNet, evaluating the evolution of the overall accu-
racy (OA) of both classifiers when different training
ratios are considered for the IP, UP, and SV scenes.
In particular, 5%, 10%, and 15% ratios have been
considered for the IP scene, and 1%, 5%, and 10%
ratios have been considered for the UP and SV scenes.
Again, the input patches have been extracted with a size
of 11 × 11 × 40.

4) Finally, our fourth experiment analyzes, in detail,
the performance of the proposed network as compared
with the original ResNet model in the presence of
noisy data. In this case, several levels of noise have

been tested with noise being modeled as a normal
distribution with μ = 0 and σ = {0.10, 0.20, 0.40,
0.80, 1.60, 3.20, 6.40}.

In order to carry out the aforementioned comparisons, some
widely used measures have been considered, including the OA
and average accuracy (AA), the kappa coefficient (K), and the
execution times (in seconds).

1) Experiment 1 (Comparison Between the Standard HSI
Classifiers and the Proposed Methods): First experiment
performs a comparison between the proposed network and
some of the most well-known HSI classifiers available in
the literature. These methods can be divided into spectral-
based ones (RF, MLR, SVM, MLP, and CNN1D), spatial
classifiers (CNN2D), and spectral–spatial classifiers (ResNet
and A-ResNet). For all the spectral–spatial methods, the input
patch size has been set to 11×11×40. In order to perform a fair
comparison, the ResNet has been implemented with the basic
architecture of the proposed network in Table II, where the
ResNet is composed by the same network’s head and tail, and
the same architecture of the trunk branch inside the network’s
body.

The obtained results are reported in Tables IV–VII, where
the corresponding average and standard deviation values
(obtained after five Monte Carlo runs) are also displayed.
Focusing on the obtained OA values, we can observe that
spatial and spectral–spatial methods are, in general, able
to outperform pixel-based methods (RF, MLR, SVM, MLP,
and CNN1D), being residual based models (i.e., ResNet and
A-Resnet) able to outperform the results obtained by
the CNN2D. Focusing on the ResNet and the proposed
A-Resnet, the performance of the latter is better than the per-
formance of the former, being able to reach higher OA values
than the original ResNet, in particular, in the classification of
the IP and SV scenes. Another interesting aspect is the AA,
which is higher in the proposed A-ResNet than in the original
ResNet, indicating that, on average, the high OA achieved
is not due to peaks in, say, very well ranked classes, but
to a generally better rank for all classes. This is also sup-
ported by the smaller standard deviation values exhibited by
our A-ResNet. In particular, we can highlight the good perfor-
mance of the proposed model in small classes, (for instance,
Alfalfa and Oats in the IP scene or Lettuce romaine 6wk in the
SV scene), where the A-ResNet is able to reach better accuracy
values than the basic ResNet. Focusing on SV and UH scenes
(in Tables VI and VII, respectively), the obtained OA values
may lead us to think that both ResNet and A-ResNet exhibit
similar behavior. However, the standard deviation of A-ResNet
is significantly smaller, indicating more robust and stable
results (as the AA scores also suggest).

In addition, some of the obtained classification maps are
shown in Figs. 5–7. It can be observed that the classification
maps obtained by pixel-based classifiers show salt-and-pepper
noise in almost the full IP data set and in some classes
of SV, particularly Vinyard-untrained and Grapes-untrained.
In the UP scene, the RF missclassifies a large amount of
pixels in the Bare Soil class, for instance. In contrast, spectral–
spatial methods greatly reduce these effects, with ResNet and
A-ResNet being able to obtain classification maps that are
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TABLE IV

CLASSIFICATION RESULTS FOR IP DATA SET USING 15% OF THE AVAILABLE LABELED DATA

TABLE V

CLASSIFICATION RESULTS FOR UP DATA SET USING 10% OF THE AVAILABLE LABELED DATA

TABLE VI

CLASSIFICATION RESULTS FOR SV DATA SET USING 10% OF THE AVAILABLE LABELED DATA

close to the original ground-truth. In addition, if we compare
the original ResNet to our A-ResNet, we can see that the
classification maps produced by the latter exhibit borders
between classes that are more sharply defined and clean than

those obtained by the original ResNet (for instance, in the
SV scene, the A-ResNet provides a better separation between
the Fallow-rough-plow field and the Vinyard-vertical-trellis
and Grapes-untrained classes).
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TABLE VII

CLASSIFICATION RESULTS FOR UH DATA SET

Fig. 5. Classification maps provided for the IP data set by different methods (see Table IV). (a) RF (75.31%). (b) MLR (77.76%). (c) SVM (84.48%).
(d) MLP (83.50%). (e) CNN1D (84.02%). (f) CNN2D (92.69%). (g) ResNet (95.94%). (h) A-ResNet (98.75%).

Fig. 6. Classification maps provided for the UP data set by different methods (see Table V). (a) RF (89.37%). (b) MLR (89.73%). (c) SVM (94.10%).
(d) MLP (94.04%). (e) CNN1D (94.61%). (f) CNN2D (98.27%). (g) ResNet (99.39%). (h) A-ResNet (99.86%).

2) Experiment 2 (Comparison Between the Advanced
Spectral–Spatial HSI Classifiers and the Proposed Method):
In order to focus, in more detail, on spectral–spatial clas-
sifiers, this experiment compares the proposed attentional
model with several spectral–spatial methods discussed in [92].
In this context, the proposed A-Resnet has been adapted to
receive the same input data as PCA-CNN, EMP-CNN, and
Gabor-CNN, extracting from a fixed training set available for
the UP scene [92] the same patches with size 27 × 27 × 3.

The obtained results can be observed in Table VIII. Focus-
ing on the methods described in [92], it is interesting to note
that the convolution-based ones are able to reach the highest
OA scores, being Gabor-CNN the best one in [92] (thanks to
the ability of the Gabor filter to extract and encode highly
discriminant spatial features). However, the A-ResNet is able
to outperform the OA values of the methods reported in [92],

exhibiting 92.06% OA, which is around 0.44% points higher
than the Gabor-CNN.

3) Experiment 3 (Evolution of Overall Accuracy of ResNet
and A-Resnet When Different Training Ratios Are Considered):
Focusing on residual models, the original ResNet and the
proposed A-ResNet, this experiment studies the behavior of
both models when different amounts of labeled data are avail-
able to perform the training step. The IP, UP, and SV scenes
have been considered, training the models with 5%, 10%,
and 15% of the available labeled samples for the IP scene,
and 1%, 5%, and 10% of the available labeled samples for the
UP and SV scenes, respectively.

The obtained results are graphically displayed in Fig. 8.
We can observe that, when few training samples are used
(5% for IP and 1% for UP and SV, respectively), the proposed
A-ResNet model is able to reach the best OA values with the
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Fig. 7. Classification maps provided for the SV data set by different methods (see Table VI). (a) RF (90.12%). (b) MLR (92.35%). (c) SVM (93.67%).
(d) MLP (93.73%). (e) CNN1D (95.01%). (f) CNN2D (97.94%). (g) ResNet (98.92%). (h) A-ResNet (99.85%).

TABLE VIII

CLASSIFICATION RESULTS FOR UP DATA SET WITH THE FIXED TRAINING SET USED IN [92]

Fig. 8. Evolution of the OA (Y-axis) for the ResNet and the proposed model (A-ResNet) when classifying (a) IP, (b) UP, and (c) SV hyperspectral scenes
using different training ratios.

lowest standard deviation, suggesting that the proposed method
is able to better address the problem of overfitting when few
training samples are provided to the network, obtaining robust
results. As we feed more samples to the network, the accuracy
gap between the original ResNet and the proposed A-ResNet
becomes smaller although the deviation of the attentional
network is always much smaller than that of the standard
ResNet. This indicates that the proposed method is able
to improve the standard ResNet when few training samples
are employed, achieving, at least, the same result when a
reasonable amount of training samples are used [see Fig. 8(c),
obtained using 10% of the available labeled samples for the
SV scene].

4) Experiment 4 (Comparison Between the Basic ResNet
and the Proposed Method): Motivated by the previous exper-
iment, the fourth experiment studies, in more detail, the
behavior of the basic ResNet and the proposed model
A-ResNet. The goal of this experiment is to validate the per-
formance and robustness of the proposed method with respect
to ResNet when the test data are corrupted. In remote sensing,
it is desirable to generate models that process data in a robust
manner, for instance, training and testing the classifier model
with data obtained at different temporal acquisitions, or after
different captures of the same area. These situations introduce
certain disturbances or changes in the training and testing data
to which the models must be able to respond in a reliable
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TABLE IX

OA OF ResNET AND THE PROPOSED MODEL (A-ResNeT) OVER THE IP, UP, AND SV DATA SETS
WHEN DIFFERENT NORMAL RANDOM PERTURBATIONS ARE INSERTED INTO THE DATA

Fig. 9. Degradation of the OA (Y-axis) of ResNet and the proposed model A-ResNet for (a) IP, (b) UP, (c) SV, and (d) KSC, comparing the accuracy reached
with the original data (σ = 0) and the accuracy reached with perturbed data, being σ = {0.01, 0.02, 0.03, 0.04, 0.05} (X-axis).

manner. As a result, this experiment evaluates how Resnet and
A-ResNet behave when they have to deal with perturbed data.

In order to simulate perturbed data, the original IP, UP, and
SV data sets have been modified through a random normal
distribution with mean μ = 0 and seven different standard
deviation values σ = {0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40}.
Neural models have been trained over the original data sets
using 15% of the available labeled samples from IP and 10%
of the available labeled samples from UP and SV. Again,
patches of 11 × 11 × 40 have been employed as the input
data. The obtained results are given in Table IX.

With slight disturbances (σ = 0.10), we can observe that
the ResNet exhibits a small decay of OA values in compar-
ison with the case that no perturbations are present in the
IP (−0.89) and UP (−0.1) data sets, while in the SV data
set, the difference is very small (−0.02), as we can observe
in Fig. 9. In turn, the A-ResNet is not significantly affected
by the introduced perturbations. For instance, in the IP scene,
it is even able to outperform the ResNet in terms of OA,
being 0.09% points better when noise is not included.

However, as the noise level increases, we can see how
the OA of the standard ResNet decreases significantly,
in particular, from σ = 1.6. Therefore, the features extracted
by the standard ResNet from these data sets are not rel-
evant or generic enough to be applied in scenarios with
perturbations. Instead of that, the performance of the proposed
models remains more stable. For instance, for the IP data set,
the A-ResNet exhibits a degradation of 2.37% points, while
the ResNet exhibits a degradation of 12.97 points. Also, in the
experiments with the UP and SV scenes, the ResNet is more
affected than the A-ResNet although the gap between the
two seems smaller. However, with greater σ values, the gap
becomes larger. This behavior can be also observed for the rest
of σ values (see Fig. 9); ResNet reaches the lowest OA and
exhibits the worse degradation of performance with perturbed
data, while the proposed model maintains a high OA and

significantly lower degradation.
The OA values in Table IX and the degradation performance

in Fig. 9 indicate that the proposed model is more robust to
perturbations in the data, achieving high OA values. Also, it is
able to extract more discriminative features from the original
training data in comparison with ResNet, being the A-ResNet
the most robust architecture for all data sets (even in the
presence of significant distortions).

V. CONCLUSION

In this paper, a new model for spatial–spectral HSI classi-
fication has been proposed by combining a DL architecture
(ResNet) and visual attention techniques. The filtering system
introduced by the visual attention model, following bottom-
up and top-down visual selections, allows for postprocessing
of the extracted data, enhancing the quality of the feature
extraction process as well as obtaining more representative
and significant features, leading to a more precise and robust
classification of HSI data.

Our experimental comparisons have been conducted using
four publicly available HSI data sets, evaluating the proposed
visual attention-driven model (A-ResNet) versus seven stan-
dard machine learning and DL classifiers and six advanced
spectral–spatial methods, revealing that the proposed networks
exhibit competitive results when compared to state-of-the-
art techniques, such as CNNs (combined with different tech-
niques) and ResNets. Also, a deeper comparison between the
ResNet and the proposed model with different amounts of
training data and perturbed data revealed that our newly pro-
posed model is able to extract more relevant, discriminative,
and complete features from HSI scenes, exhibiting robustness
to network degradation when very limited training samples
and/or highly disturbed data are considered.

As future work, we intend to improve the parameter opti-
mization mechanism of the proposed network (particularly
when very few labeled samples are available) in order to
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reduce the effect of overfitting. Also, we are planning to
combine additional visual attention techniques with other deep
models, with the aim of enhancing the quality of the extracted
features and the final classification results.
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