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Abstract— Deep neural networks (DNNs) exhibit great per-
formance in the task of hyperspectral image (HSI) classification.
However, these models are usually overparameterized and require
large amounts of training data in order to properly avoid the
curse of dimensionality and the variability of spectral signatures,
thus suffering from overfitting problems when very few training
samples are available, due to poor generalization ability in this
particular case. The traditional regularization dropout (DO)
strategy has been shown to be effective in fully connected DNNs
but not in convolutional-based ones. This is mainly due to the
way these architectures manage the spatial information. In this
letter, we introduce a new approach to improve the generalization
of convolutional-based models for HSI classification. Specifically,
we develop a neighboring region DO technique that selectively
cuts off certain neighboring outputs, creating spatial dropped
regions. Our experimental results with two well-known HSIs
reveal that the newly proposed method helps to achieve better
classification accuracy than the traditional DO strategy, with a
low computational cost.

Index Terms— Convolutional neural networks (CNNs),
dropout (DO), hyperspectral images (HSIs), regularization.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) comprise big cubes
of adjacent spectral bands, where each pixel records

the electromagnetic interaction between the incident solar
radiation and the observed objects in a spectral signature that
can be considered unique for each material on the surface of
the earth. This allows a detailed characterization of observed
areas and enables their successful exploitation on a wide range
of applications [1].

The huge amount of information contained in HSI data
cubes has been exploited by a large variety of spectral,
spatial, and spectral–spatial classification methods, offering
models with good performance in the task of understanding
those features and relationship contained in the image.
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Traditionally, the following three kinds of methods have been
established depending on the training procedure.

1) Unsupervised methods do not need to be trained, as they
do not use labeled samples to fine-tune the model,
being quite popular some clustering method such as
k-means [2], linear discriminant analysis (LDA) [3], or
probabilistic latent semantic analysis (PLSA) [4].

2) Supervised methods split the available data into labeled
and unlabeled samples in order to perform the train-
ing and the inference steps. Some widely used super-
vised classifiers are the multinomial logistic regression
(MLR) [5] or the support vector machine (SVM) [6].

3) Semisupervised methods apply different strategies
to include unlabeled data, such as active learning
approaches [7], or to expand the training set, using, for
instance, generative adversarial networks (GANs) [8].

With the release of large and complex HSI data sets,
the development of new classification algorithms is required in
order to properly interpret the acquired data. Deep learning and
convolutional-based approaches have been successfully used
for this purpose, reaching excellent performance due to their
inherent ability for exploiting different spectral and spatial fea-
tures through deep and hierarchical architectures made up of
stacked feature extractors [9], [10]. However, the performance
of these methods for HSI classification is bounded by the high
dimensionality of the data, the limited number of available
labeled samples, and, generally, the low spatial resolution of
HSIs, leading to the curse of dimensionality (Hughes effect),
overfitting, and data variability problems [1].

Deep neural networks (DNNs), in general, and convolu-
tional neural networks (CNNs) [11], in particular, can be seen
as approximators of the form f : X → Y that solve an
optimization function subject to a loss expression L. In this
sense, supervised DNNs are mapping problems where, given
an HSI data set, find the corresponding labels by tuning a
parameterized model M(X , θ) = Y , whose parameters θ
(distributed among the layers’ stack) should minimize the error
between the predicted and the expected outputs. Recent works
claim that the deeper the M, the better the accuracy that
can be achieved [12]. This has a direct effect on the number
of parameters, imposing severe restrictions on the amount of
employed training samples, apart from the data degradation
factor that is directly related to the increase of the model’s
depth. In this regard, several data augmenting and regulariza-
tion techniques have been explored to avoid these problems.
Focusing on the first ones, some works propose to increase
the training set by applying slight spectral modifications and
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spatial transformations to the available data [13], although
these approaches are very time-consuming (simpler methods,
such as the addition of random noise, do not take into account
the spatial characteristics of the image). Haut et al. [14]
introduced random occlusion (RO) as a new data augmenting
method that drops certain areas on the CNN’s inputs, main-
taining the spatial consistency between the dropped zones.
Although this approach exhibits good performance, it is not
robust to network parameters, in the sense that relations
between the weights of adjacent layers are not encouraged.
On the other hand, regularization methods such as dropout
(DO) [15] are able to strengthen the model, enforcing indepen-
dence between adjacent layer weights by setting to zero some
randomly selected neural activations during the training stage.
In this context, DO is widely used due to its simplicity and
low computational cost [9], being effective particularly on the
fully connected layers of the CNN’s architecture. However, its
performance with convolutional layers is not that impressive,
due to its random feature clipping, which does not take into
account spatial implications. In fact, the effects of DO on
a convolutional’s output imitate the traditional “salt&pepper”
noise, while feature maps remain spatially correlated. In the
end, the extracted information is still propagated to the fol-
lowing layers [16].

In this context, inspired by the original DO mechanism and
the RO data augmenting approach, this letter introduces the
neighboring region DO (NRDO), a new spatially correlated
DO mechanism in which random neighboring kernel’s activa-
tions are dropped, creating occluded areas on the convolutional
layers’ output volumes that maintain spatial consistency while
avoiding a significant increase in computational complex-
ity [16]. The remainder of this letter is organized as follows.
Section II describes the proposed method. Section III discusses
the performance of the proposed NRDO using two HSIs,
demonstrating its accuracy. Section IV concludes with some
remarks and hints at plausible future research lines.

II. METHODOLOGY

Let us define X ∈ R
n1×n2×nbands as a HSI cube, where

n1 × n2 are the spatial components and nbands is the number
of spectral bands. Each HSI pixel can be represented as a
spectral vector xi, j ∈ R

nbands . An end-to-end spatial 2-DCNN
model normally performs a preprocessing step, encoding the
spectral information into one band by using, for instance,
principal component analysis (PCA) and extracts, for each 1-D
pixel xi, j , a neighboring window pi, j ∈ R

d×d×1 of d × d
spatial dimensions, with xi, j being the central pixel. During
the training stage, pairs of patches and labels {pi, j , yi, j } are
used to create the training set, where yi, j ∈ R

nclasses represents
the label of the (i, j)th patch’s central pixel in one-hot
encoding way. These patches are fed to the 2-DCNN, which
applies a hierarchical stack of feature extraction (FE) stages
to obtain different levels of data representation, until reaching
an abstract representation at the end, that encodes the more
descriptive features and internal nonlinear data relationship,
which are employed by the final classifier layers to produce a
classification output.

Each FE-stage is usually composed by a set of different
layers, being the convolutional layer the major responsable
for the extraction. Each layer l defines K (l) filters, with

k(l) × k(l) neurons each. In this sense, the kernel defined
by the lth layer computes the operation over the input with
sliding-step s, being overlapped on local areas. At the end,
the kernel performs the linear convolution (∗) between the
weights of the neurons W(l), the input data volume X(l−1), and
the bias b(l), obtaining an output volume X(l) ∈ R

n(l)×n(l)×K (l)

of K feature maps with n(l) × n(l) extracted features

X(l) = H(W(l) ∗ X(l−1) + b(l))K (l)×k(l)×k(l) . (1)

After the FE-stage performed by the convolutional layer,
a nonlinear activation function H(·) is applied to the output
volume in order to extract the nonlinear features and rela-
tionship contained into the volume. In our case, we apply
the well-known rectified linear unit (ReLU) function. Also,
a downsampling operation (implemented by max or average
pooling) is applied in order to reduce the spatial dimensions
and summarize the obtained features.

From (1), it can be observed that the outputs of previous
layers are refined by the following ones, i.e., the CNN’s
neurons are, in fact, working in a cooperative way [15], [17].
Although this hierarchical mechanism is appealing during
the training stage, introduce weak links between the neurons
of adjacent layers, and hampering the inference step [9].
In this context, traditional DO [15] is applied between the
activation and pooling layers as a regularization method to
avoid overfitting and provide some independence between
adjacent layers’ neurons, by setting to zero some randomly
selected neural activations. This improves the backpropagation
procedure, where neurons should be adjusted in an individual
way, instead of establishing trivial dependencies with other
neurons. The main motivation behind this approach is to force
the layer’s neurons to extract more robust and discriminatory
features on their own. Mathematically, we can break down
(1) in order to focus on the (i, j)th extracted feature of
convolutional layer l in its zth filter (with z = {1, . . . , K (l)}),
to which a gating 0-1 Bernoulli variable is applied as the DO
regularization term δ

(l)
i, j , following a probability percentage p(l)

which is fixed to the lth layer [18]:

δ
(l)
i, j = Bernoulli(p(l)) (2a)

x (l)z
i, j = H

⎛
⎝δ

(l)
i, j

k(l)∑

î=1

k(l)∑

ĵ=1

(
w

(l)
î, ĵ

x (l−1)

(is+î),( j s+ ĵ)

)
+ b(l)

⎞
⎠

z

. (2b)

Fig. 1 provides a graphical illustration of how the DO
regularization method works, using a synthetic feature map
given in Fig. 1(a). As it can be observed in Fig. 1(b) and (c),
the DO injects random noise to the feature maps in order to
disentangle the behavior of adjacent layers’ neurons. However,
this noise is not structured, which makes it not completely
effective in the task of removing semantic information of the
feature map, where nearby features still contain related spatial
information.

To overcome the limitations of the traditional DO strategy,
we propose to inject spatial-structured noise at every feature
map by dropping the output of neighboring neural activations,
obtaining full-dropped spatial regions on the output feature
maps that effectively remove spatial-correlated information.
In this sense, the amount of neural activations γ (l) that will be
dropped, coupled with the surrounding window’s spatial size
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Fig. 1. Visualization of the original DO and the proposed NRDO performance
over a feature map of size 17 × 17. The first row shows (a) original feature
map and the feature maps obtained after dropping isolated samples using a DO
of (b) p(l) = 20% and (c) p(l) = 40%. The second row shows the feature map
obtained after applying NRDO by configuring the dropping percentage and
the dropping windows size to (d) p(l) = 20% and d(l) = 3, (e) p(l) = 20%
and d(l) = 5, and (f) p(l) = 20% with d(l) = 10.

d(l) (that will be set to zero), must be defined at each layer l.
Following the DO method, for each position (i, j) of the input
feature map X(l−1), our NRDO applies the gating variable δ

(l)
i, j ,

obtained by the Bernoulli distribution with probability γ (l).
In addition, for the zero variables δ

(l)
i, j , a spatial square patch

centered on (i, j) is obtained as a zero-mask with dimensions
d(l) × d(l). Finally, this mask is overlapped and applied over
the input volume X(l−1), dropping the corresponding window
in all the K filters of the lth layer. However, instead of setting
a direct dropping probability, γ (l) is obtained as a correction
of the traditional DO percentage p(l), the dropping window’s
size d(l), and the spatial dimension of the obtained feature map
X(l) ∈ R

n(l)×n(l)×K (l)
by the lth convolutional layer. In this

context, γ (l) is obtained as

γ (l) = p(l)

(d(l))2

(n(l))2

(n(l) − d(l) + 1)2 . (3)

It is recommened that d(l) is not be greater than n(l). In fact,
(3) makes an approximation between the desired amount of
dropped data, indicated by the known p(l), and the dropped
neighborhood for each zero variable δ

(l)
i, j , to make an equitable

balance between the pixels and their surrounding windows to
be dropped and the desired amount of spatial-structured noise
to be injected.

Algorithm 1 gives a general overview of the proposed
NRDO method, which is applied between the convolutional
and nonlinear activation layers, following the scheme given
in (2). An interesting aspect is the computation of the win-
dow to be dropped. As some HSI data sets are character-
ized by their low spatial resolution, our strategy can help
in this particular case since the dropped neighborhoods are
adapted to the feature map’s margins, taking advantage of
all the available features as we can observe in Fig. 1(d)–(f),
where the dropped neighborhoods have been adjusted to the
feature’s edges. Moreover, these dropped windows can be
also spatially overlapped, as it can be observed in Fig. 1(f),

Algorithm 1 NRDO

1: procedure NRDO(X(l) ∈ R
n(l)×n(l)×K (l)

: obtained feature
map from l-th layer, p(l): dropping percentage, d(l): drop-
ping window’s size)

2: γ (l) = p(l)

(d(l))2

(
n(l)

)2

(n(l)−d(l)+1)2 � Dropping probability

3: M = Ones(n(l), n(l), K (l)) � Initializing mask
4: for i, j in n(l) do

5: if
(
δ
(l)
i, j = Bernoulli(γ (l))

)
== 0 then

6: M = Dropped_Window_on_M(i, j, d(l)) �
For each zero δ

(l)
i, j , a zeroed square window d(l) × d(l) is

set on the mask M with the center on the (i, j) position
7: end if
8: end for
9: X̂(l) = M · X(l)

return X̂(l)

10: end procedure

TABLE I

ARCHITECTURAL DETAILS OF THE PROPOSED MODEL

where two dropped regions that are slightly overlapped can be
appreciated.

On the other hand, the application of a rigorous NRDO with
a fixed value of p(l) can negatively affect the performance
of the network, while the implementation of a soft NRDO
may not provide the desired robustness. In order to overcome
the limitations, our model is trained with a p(l) whose value
increases linearly and progressively through the epochs [16],
from zero probability to the maximum indicated value of
p(l), with the goal of progressively adapting the performance,
extracting more robust and independent features at each epoch.

III. EXPERIMENTS

A. Experimental Configuration and Data Sets

In order to test the performance of the proposed regulariza-
tion technique, a deep 2-DCNN model has been implemented
for HSI classification. Inspired by previous works in [14],
the proposed network is composed of four convolutional layers
and two fully connected layers. Focusing on the convolu-
tional layers, the second and third layers implement one
of the two available dropping mechanism, DO or NRDO,
for comparative purposes. Table I describes the details of
the configuration of the network, which has been executed
on a hardware environment composed by a sixth-generation
Intel Core i7-6700K processor with 8M of Cache and up
to 4.20 GHz (four cores/eight way multi-task processing),
an ASUS Z170 progamming motherboard, a GPU NVIDIA
GeForce GTX 1080 with 8-GB GDDR5X of video memory
and 10 Gbps of memory frequency, 40 GB of DDR4 RAM
with a serial speed of 2400 MHz and a Toshiba DT01ACA

Authorized licensed use limited to: Antonio Plaza. Downloaded on May 30,2020 at 17:07:43 UTC from IEEE Xplore.  Restrictions apply. 



PAOLETTI et al.: NRDO FOR HSI CLASSIFICATION 1035

TABLE II

COMPARISON BETWEEN DO AND NRDO, WITH DIFFERENT PERCENTAGES OF p(l) AND SETTING d(l) = 3

TABLE III

OBTAINED OA RESULTS FOR EACH CONSIDERED CLASSIFIER

HDD with 7200RPM and 2 TB of storage capacity. In addition,
and in order to efficiently implement the proposed approach,
it has been parallelized over the GPU using CUDA language
over Pytorch framework. Finally, all the codes and examples
presented in this letter are available online.1 The proposed
method has been tested over two widely used HSI data
sets. The first one is the AVIRIS’s Indian Pines (IP) scene,
which has 145 × 145 samples with low spatial resolution
of 20mpp and 200 spectral bands in the wavelength range from
0.4 to 2.5 μm. It was captured over an agricultural and forest
area and its ground truth is composed of 16 different classes.
The second one is the ROSIS’s University of Pavia (UP) scene,
which contains 610 × 340 samples with higher (1.3 mpp)
spatial resolution and 113 spectral bands in the wavelength
range from 0.43 to 0.86 μm. It was captured over an urban
area and its ground truth is composed of nine different classes.

B. Experimental Results and Discussion

1) Comparison Between Dropout and Neighboring Region
Dropout: First, experiment compares the performance of the
2-DCNN model with regularization method, considering the
original nonspatially structured DO and the proposed NRDO.
Each model has been trained over IP and UP with 1%, 3%,
5%, 10%, 15%, and 20% of randomly selected samples, input
patch size of 11 × 11, and different dropping percentages
(p(l) = {20%, 40%, 80%}), fixing the dropping window’s
size to d(l) = 3 in the case of NRDO. Table II shows
the obtained results. Focusing on DO, this strategy is highly

1https://github.com/mhaut/DeepNRD

beneficial when the scene is spectrally mixed and contains few
regular spatial structures (as it is the case with the IP scene).
Moreover, the bigger p(l), the larger the overall accuracy (OA)
improvement. However, with the UP scene, the effectiveness
of DO is appreciably lower than with the IP scene (in fact, only
in the case of p(l) = 80%, the OA values rise by more than
1% point for small training sets), even reducing the overall
performance with limited training samples (1% of IP and 3%
of UP employing p(l) = 20%). In this sense, the proposed
method exhibits a more consistent behavior with both data
sets, being able to outperform the results obtained by DO and
significantly improving the results obtained by the original
2-DCNN without regularization method and exhibiting a lower
standard deviation. The effectiveness of this method is visibly
high in IP and UP, in particular, when small training sets
are considered, reaching the best OA performances when
p(l) = 80%. It must be noted that, since NRDO occludes entire
windows, it prevents the model from seeing all the complete
features of the input data, forcing the network to look for more
robust parameters.

2) Comparison Between Neighboring Region Dropout and
Several Classifiers: Second, experiment performs a compar-
ison between the proposal NRDO, with p(l) = 40% and
d(l) = 3, and six different classifiers: 1) random forest
(RF); 2) SVM with radial basis function; 3) shallow multi-
layer perceptron (MLP); 4) basic and kernel extreme learning
machines (ELM and K-ELM); 5) spectral 1-DCNN; and 6)
spatial 2-DCNN. In addition, four 2-DCNN models have been
considered: without data augmenting or DO methods (original
data), with RO [14], with p(l) = 80% of DO, and with
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Fig. 2. Classification maps of IP, being (a) simulated RGB composition of
the scene, (b) ground truth, and from (c) to (f), the obtained classification
maps corresponding to the 2-DCNN models of Table III. (a) RGB. (b) GT.
(c) 2-DCNN (92.43%). (d) 2-DCNN-RO% (96.96%). (e) 2-DCNN-DO%
(97.90%). (f) 2-DCNN-NRDO% (98.49%).

Fig. 3. Evolution of the (Left) loss and (Right) OA as a function of the
number of training epochs when using the 2-DCNN with and without DO
and NRDO regularization methods and RO data augmenting method, over IP
data set, with 10% of training data and setting p(l) = 80% and d(l) = 3%.

p(l) = 80% of NRDO. Table III reveals that spatial models
are able to greatly outperform spectral methods, reaching
90% and 99% of OA when classifying IP and UP scenes,
respectively. Focusing in spatial models, the proposed NRDO
is able to reduce the overfitting problem when lower training
percentages are employed, achieving the best result in all
the experiments. This suggests that neurons are able to learn
independently while retaining a spatial context, so the final
classification becomes more robust. Fig. 2 shows classification
maps obtained by the spatial classifiers. It can be seen that
the proposed method is able to correctly classify even the
smallest and more complex classes, thus providing a more
detailed map. Finally, Fig. 3 shows the evolution of the loss
and OA with increasing epochs obtained by the 2-DCNN
without any data augmenting/regularization method, and with
RO, DO, and NRDO. Looking at the raw model, the loss
grows as the epochs increase, indicating a clear overfitting
problem. Although the RO decreases the loss faster than DO,
it also suffers the overfitting in the final epochs. However,
the proposed method is able to achieve lower and stable loss
scores than DO and RO. This is also observed in the evolution
of OA, where the NRDO enables a better tuning of the result.

IV. CONCLUSION

This letter evaluates a spatial-structured regularization tech-
nique for HSI data classification, which is based on ran-
domly drop squared-windows of the convolutional-extracted
feature maps, retaining the spatial consistency and allowing

a strongest, deep and independent learning of the layer’s neu-
rons. Obtained results demonstrate that not only the proposed
approach efficiently deals with the overfitting problem when
low training data are available but is also able to reach a
better performance than other compared techniques. Moreover,
as the proposal improves the performance of the convolutional
layer, it can be effectively used in more complex models,
such as ResNets and DenseNets. Finally, since the approach
is not restricted to spatial classifiers, in the future, we plan to
incorporate it to spatial–spectral models too.
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