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Abstract Spatio-temporal fusion (STF) aims at fusing (temporally dense) coarse resolution images and
(temporally sparse) fine resolution images to generate image series with adequate temporal and spatial
resolution. In the last decade, STF has drawn a lot of attention and many STF methods have been developed.
However, to date the STF domain still lacks benchmark datasets, which is a pressing issue that needs to be
addressed in order to foster the development of this field. In this review, we provide (for the first time in the
literature) a robust benchmark STF dataset that includes three important characteristics: (1) diversity of
regions, (2) long timespan, and (3) challenging scenarios. We also provide a survey of highly representative
STF techniques, along with a detailed quantitative and qualitative comparison of their performance with our
newly presented benchmark dataset. The proposed dataset is public and available online.
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1 Introduction

The analysis of multi-temporal image series is necessary and important in many remote sensing applica-
tions, such as vegetation/crop monitoring and estimation [1-7], evapotranspiration estimation [8], atmo-
sphere monitoring [9], land-cover/land-use change detection [10], surface dynamic mapping [11], ecosystem
monitoring [12], soil water content analysis [13], and detailed analysis of human-nature interactions [14].
The changes in the surface of the Earth usually occur within short time, and require high spatial res-
olution in order to be properly modeled. However, the spatial resolution of satellite instruments such
as MODIS (250, 500 and 1000 meter-pixels), AVHRR (1100 meter-pixels) and OrbView-2 (1000 meter-
pixels) is generally low. While sensors like Landsat-TM/ETM+/OLI and SPOT5-HRG/HRS/VGT are
able to provide images with higher spatial resolution, they can just provide temporally sparse image series
owing to their long revisit cycle (e.g., 16 days in the case of Landsat, or 26 days in the case of SPOTS5).
This is a consequence of the tradeoff between the pixel size and the scanning swath of the sensors [15],
which means that no available instruments are able to offer temporally dense, high spatial resolution
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image series. For convenience, in the following we refer to fine and coarse satellite images according to
their spatial resolution.

Spatio-temporal fusion (STF) aims at fusing (temporally dense) coarse spatial resolution images and
(temporally sparse) fine spatial resolution images to generate image series with adequate temporal and
spatial resolution. In the last decade, STF has drawn a lot of attention, with many new STF methods
developed. However, to date the datasets used to test different STF approaches are very different, which
leads to lack of standardization in the validation of these approaches. In other words, the STF domain
still lacks benchmark datasets, which is a pressing issue that needs to be addressed. In order to develop
robust benchmark STF datasets, three important characteristics need to be satisfied: (1) diversity of
regions, (2) long timespan, and (3) challenging scenarios. We elaborate on these requirements below:

(1) Diversity of regions. There are multiple application domains for STF techniques, such as urban,
rural, forest and mountain areas. As a result, any benchmark dataset for STF techniques should include
as many different land-cover scenarios as possible. In other words, the more diverse the datasets are, the
more comprehensive the assessment of an STF method will be.

(2) Long timespan. The land surface changes for a specific area can be very diverse. As a result,
benchmark datasets should cover these possible changes as much as possible. Hence, image sequences
covering a long timespan are highly desirable. Such sequences are quite important in order to test the
robustness of an STF method. On the other hand, from a methodological viewpoint, the development of
deep learning-based methods requires a relatively large number of training data sets, and long timespan
data are therefore suitable in this context.

(3) Challenging scenarios. There are several additional challenges for STF method validation, including
the spatial resolution gap between fine and coarse images, the characterization of changes in heterogeneous
areas, and the prediction of land-cover changes. These aspects should also be included in any relevant
benchmark dataset for STF methods.

Based on the three aforementioned aspects, we present a new comprehensive benchmark dataset for
evaluation of STF methods. We also review some highly representative STF techniques and provide a
quantitative and qualitative comparison of their performance with our newly presented benchmark, which
has been made publicly available.

The remainder of the review is organized as follows. Section 2 provides a survey on available STF
methods. Section 3 describes our new benchmark dataset, addressing its main characteristics in terms
of diversity of regions, long timespan and challenging scenarios. Section 4 provides an experimental
comparison of some of the algorithms described in Section 2 with the benchmark dataset in Section 3.
Finally, Section 5 concludes the paper with some remarks and hints at plausible future research lines.

2 STF methods

Following the recent review in [15], we divide existing STF methods into five main categories: weight
function-based methods, unmixing-based methods, learning-based methods, Bayesian-based methods,
and hybrid methods. In the following, we provide details on each of the aforementioned STF categories.

2.1 Weight function-based methods

The spatial and temporal adaptive reflectance fusion model (STARFM) is the first weight function-based
STF method developed in the literature. This method first assumes that all the pixels in the coarse
images are pure. It uses a weighted strategy to add the reflectance changes between two coarse images
to the prior fine image so as to predict the target image. STARFM has been shown to be able to capture
phenological changes. However, its performance in highly heterogeneous landscapes and in the task of
capturing land-cover changes is limited [16].

STARFM has served as the basis for the development of many weight function-based methods. For in-
stance, the spatial-temporal adaptive algorithm for mapping reflectance change (STAARCH) uses tasseled
cap transformations to detect the time of occurrence of land-cover changes from the coarse image series,
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successfully improving STARFM in this particular task [17]. The enhanced spatial and temporal adap-
tive reflectance fusion model (ESTARFM) improves the STARFM prediction accuracy in heterogeneous
areas by introducing a conversion coefficient between the reflectance from coarse images and that from
fine images [18]. The method in [19] has also been developed to consider sensor observation differences,
changing the way in which STARFM calculates pixel weights [19]. The operational data fusion frame-
work of the integrated STARFM integrates STARFM and some pre-processing methods into a unified
framework that includes angular corrections on the coarse images, precise and automatic co-registration
on both the coarse and fine image pairs, and automatic selection of fine and coarse paired dates [20]. The
area-to-point regression kriging-based STARFM uses area-to-point regression kriging to downscale the
coarse images, and then applies STARFM [21]. The robust adaptive spatial and temporal fusion model
divides the surface changes into shape changes and non-shape changes, then uses a patch-level STARFM
to predict the non-shape changes. After that, a principal component analysis (PCA)-based change de-
tection and a nonlocal sparse regression model are used for the prediction of shape changes. Finally, a
regression-based high-pass modulation is conducted to further reduce the prediction error and improve
the spatial details [22]. The bilateral filter based spatio-temporal method considers the temperature
of ground objects in urban areas, and uses bilateral filtering to determine the weights of neighbouring
pixels in STARFM to produce high spatio-temporal resolution land surface temperature maps [23]. The
weighted combination of kernel-driven and fusion-based methods first uses a kernel-driven method fol-
lowed by STARFM to generate different high spatio-temporal resolution land surface temperature maps,
and then fuses these maps to obtain the final prediction [24]. The spatio-temporal adaptive data fusion
algorithm for temperature mapping characterizes the annual cycle of land surface temperature and land-
scape heterogeneity in urban areas, incorporating temporal changes of radiance into STARFM to improve
STARFM for STF of land surface temperature [25]. The method in [26] proposes a downscaling approach
that combines the STARFM and the universal triangle method to retrieve daily surface soil moisture.
The spatio-temporal enhancement method for medium resolution leaf area index (LAI) first downsamples
the LAI map from MODIS images, and then uses STARFM to fuse the obtained information with the
LATI map from Landsat images [27]. The spatio-temporal integrated temperature fusion model changes
the framework of STARFM to make it able to fuse data collected from arbitrary sensors, i.e., beyond the
simple scenario in which only two different sensors are considered for STF [28]. The modified ESTARFM
introduces land cover data as an auxiliary source of information for spectrally similar neighboring pix-
els [29]. Finally, the method in [30] uses phenological information extracted from MODIS vegetation
index time series to improve the ESTARFM in the task of predicting the reflectance of paddy rice.
There are also several weight function-based methods that are not based on STARFM. The spatial
and temporal nonlocal filter-based fusion model uses two regression coefficients to describe the land
surface changes and introduces nonlocal filtering to take advantage of the redundancy of fine images to
obtain more accurate and robust predictions [31]. The spatiotemporal image-fusion model first calculates
the ratio of different coarse images, and then classifies the resulting ratio image into three clusters.
Different clusters perform different forms of linear regression to obtain a final prediction [32]. The
rigorously-weighted spatiotemporal fusion model uses geo-statistical ordinary kriging and incorporates
this approach when calculating the weights of neighboring pixels, using uncertainty analysis to predict
the fine image [33]. The semi-physical fusion approach uses the MODIS bidirectional reflectance function
(BRDF)/albedo product (and existing Landsat observations) to predict Landsat reflectance [34]. The
spatiotemporal reflectance fusion method integrating image inpainting and steering kernel regression
fusion model first detects land-cover changes and then fills them with unchanged similar pixels by an
exemplar-based inpainting technique. The weights of local neighbouring pixels are adaptively determined
by a steering kernel regression to predict fine images [35]. The spatiotemporal model incorporating
autoregressive error correction uses a spatiotemporal autoregressive model to minimize autoregressive
errors when fitting a relationship between coarse and fine pixels. Then, the relationship is used to predict
the target images [36]. The area-to-point regression kriging based approach directly uses area-to-point
regression kriging to accomplish STF of Landsat 8 OLI and Sentinel-2 MSI data [37]. The method in [38]
uses a temporal high-pass modulation to accomplish STF. The method in [39] first uses a linear injection
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model to extract the spatial details from the prior fine image to generate a transitional prediction. Then,
a weight strategy similar to that of STARFM is designed to further improve the prediction. The best
linear unbiased estimation-based STF method accounts for the phenological characteristics of vegetation,
providing annual time series of NDVI data with high spatial resolution as the background field and that
with low spatial resolution as the observation field, and then fuses these sources of information using the
best linear unbiased estimator to obtain high spatio-temporal resolution NDVI data [40]. The spatio-
temporal vegetation index image fusion model proposes a new weighting system to disaggregate the total
NDVT change within a moving window to predict the NDVI change for each fine pixel and generate NDVI
time series in heterogeneous regions [41]. The method in [42] uses simple linear regression to integrate
Landsat and MODIS to generate high spatial resolution evapotranspiration map series. The hybrid color
mapping method uses hybrid color mapping to establish the relation between coarse images from different
times, and then the relation is utilized on the fine image to obtain the final prediction [43]. The spatial-
temporal fraction map fusion model first generates fine resolution fraction change maps by using kernel
ridge regression, and then uses a temporal-weighted fusion model to obtain a fine resolution fraction map
of the predicted date [44]. Fit-FC uses three models, i.e., regression fitting, spatial filtering and residual
compensation to conduct the STF of between Sentinel-2 and Sentinel-3 images [45].

2.2 Unmixing-based methods

The multisensor multiresolution technique (MMT) [46] was the first unmixing-based STF method in the
literature. It conducts classification on the prior fine resolution images, assuming that the coarse pixels
are linearly mixed by the classes from the classification map. It then unmixes the coarse pixels at the
prediction date within a moving window to get the reflectance change of each class, obtaining a final
prediction. MMT has been served as a baseline for many other unmixing-based STF methods. For
instance, Ref. [47] introduces constraints into the linear unmixing solution to ensure that the values of
reflectance changes are positive and within an appropriate range. The method in [48] accounts for the
within-class NDVI spatial variability by introducing a locally calibrated multivariate regression model in
unmixing. The spatial temporal data fusion approach (STDFA) first classifies multi-NDVT images from
multiple fine images to introduce the temporal change information, and then unmixes the coarse pixels to
obtain the reflectance change of each class to generate the predicted fine images [49]. The modified spatial
and temporal data fusion approach improves the STDFA by using an adaptive window size selection
method to select the best window size and moving steps for the disaggregation of coarse pixels [50]. The
enhanced spatial and temporal data fusion approach introduces a patch-based ISODATA classification
method, sliding window technology, and the temporal-weight concept to improve the STDFA [51]. The
unmixing-based spatio-temporal reflectance fusion model first adopts a change trend ratio to physically
unmix the MODIS difference images over a given period, and then unmixes the coarse pixels to calculate
the change trend ratio to get the final prediction [52]. The regularized spatial unmixing based method
(RSpatialU) utilizes prior class spectra to regularize the unmixing process and reduce the unmixing
error [53]. The database unmixing method considers that each coarse pixel comprises a mixture of
fine pixels, and resolves the coarse pixel into spatially distributed fine pixels based on the statistical
relationship of a match-up. It then creates a lookup table for each fine pixel, connecting fine pixels
to coarse pixels to predict a fine map from a (previously observed) coarse map [54]. The object based
spatial and temporal vegetation index unmixing model first segments the prior fine image to extract the
endmembers, and then conducts unmixing to obtain the final prediction [55]. Finally, the NDVT linear
mixing growth model uses unmixing to calculate the growth rate to fuse the NDVI from Landsat and
MODIS images [56].

2.3 Learning-based methods

The first leaning-based STF method in the literature was called sparse-representation-based spatiotempo-
ral reflectance fusion model (SPSTFM). This method established the relation between reflectance changes
from prior coarse images and that from prior fine images by using dictionary learning. Then, it exploits
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the resulting information to predict the target fine images [57]. The one-pair learning SPSTFM first
improves the spatial resolution of coarse images using dictionary learning, and then adopts a high-pass
module to fuse the resulting information with the prior fine image to get the final prediction [58]. The
SPSTFM and the one-pair learning SPSTFM have been proved to be effective in the task of capturing
land-cover changes [57,58]. Currently, most learning-based STF methods are based on dictionary learning.
For instance, the enhanced one-pair learning SPSTFM combines a spatially extended mode and a tem-
porally extended mode to increase the training set. This approach successfully improves the performance
of the one-pair learning SPSTFM [59]. The method in [60] exploits high-spectral correlation (across the
spectral domain) and high self-similarity (across the spatial domain) to learn a spatio-spectral fusion
basis, and then associates temporal changes using a local constraint sparse representation to develop
a spatial-spectral-temporal fusion model. The error-bound-regularized semi-coupled dictionary learning
method utilizes semi-coupled dictionary learning to address the differences between the high spatial reso-
lution and low spatial resolution images, and then adopts an error-bound-regularized model by imposing
error bound regularization [61]. The block sparse Bayesian learning based semi-coupled dictionary learn-
ing method explores the inherent characteristics of sparse coefficients and improves the STF results by
means of a priori structural sparse constraints [62]. The compressed sensing based spatiotemporal fusion
method uses a downsampling process (under the framework of compressed sensing) for reconstruction.
With the coupled dictionary to constrain the similarity of sparse coefficients, a new dictionary-based STF
method is built [63].

There are also several learning-based methods not based on dictionary learning. The extreme learning
machine based STF model is similar to SPSTFM; it performs learning between two fine and coarse
images with the extreme learning machine, significantly reducing the processing time [64]. The STF
using deep convolutional neural networks (STFDCNN) adopts CNNs to carry out STF. Its core idea is
similar to that of the one-pair-SPSTFM, i.e., super-resolution and fusion are conducted via a high-pass
module [65]. The two-stream convolutional neural network for spatiotemporal fusion (StfNet) takes into
account the temporal dependence and temporal consistency among image sequences in the CNN-based
superresolution process [66]. The deep convolutional STF network proposes a three-part (low-frequency
information extraction, high-frequency information extraction, fusion) CNN for STF [67]. The method
in [68] fuses the fractions of absorbed photosynthetically active radiation from MODIS images and those
from Landsat images by utilizing a multiple resolution tree. The method in [69] uses the support vector
regression and random forests to model the relationship between the Landsat indicators and MODIS
8-day 1 km evapotranspiration. The resulting relationship is used to predict high spatial resolution
evapotranspiration. The method in [70] utilizes the regression-tree to fuse the eMODIS and Landsat 8
information to generate synthetic NDVI data. The hybrid wavelet-artificial intelligence fusion approach
method combines wavelet transformation with artificial intelligence approaches to blend MODIS and
Landsat 8 data to predict land surface temperature series [71]. We have recently proposed a new CNN-
based STF method, named sensor-bias driven spatio-temporal fusion model (BiaSTF) [72]. The main
characteristic of this method is that it includes the sensors bias of Landsat and MODIS into the fusion
procedure. First, it uses a CNN to improve the reflectance from the coarse images. Then, another CNN
is utilized to learn the sensors bias of the two type images. The improved reflectance change and bias
contribute to obtaining the final prediction.

2.4 Bayesian-based methods

The spatio-temporal Bayesian data fusion (STBDF) incorporates the temporal correlation information
in the image time series and casts the fusion problem as an estimation one, in which the fused image
is obtained by the maximum a posteriori estimator. This approach is suitable for heterogeneous land-
scapes [73]. The method in [74] uses the Bayesian maximum entropy to blend the sea surface temperature
from MODIS images and that from AMSR-E. The method in [75] proposes a uniformed Bayesian frame-
work for both spatial-spectral fusion and STF. The method in [63] proposes a spatio-spectral-temporal
fusion model which utilizes a maximum posteriori probability to describe an inverse fusion problem.
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Then, it constructs an integrated relationship model with all the involved data. Finally, the fused image
is obtained by the classical conjugate gradient optimization algorithm. The method in [76] proposes
a spatio-spectral-temporalfusion model which utilizes a maximum posteriori probability to describe an
inverse fusion problem.

2.5 Hybrid methods

Some STF methods integrate the unmixing strategy, Bayesian theory and weight functions to pursue bet-
ter performance. For instance, the spatial and temporal reflectance unmixing model (STRUM) conducts
unmixing (constrained by Bayesian theory) to the pixels of the change map from coarse images in order
to first obtain the reflectance change of each class. Then, it uses weighted functions (in the same way
as STARFM) to create a fused image using moving windows [77]. The improved STRUM replaces the
classification map by using abundance images obtained from the prior fine images, and then introduces
sensor difference adjustment to improve the STRUM method [78]. The improved STARFM with the
help of an unmixing-based method first uses an unmixing strategy to get the abundance images from
coarse images. Then, the unmixing images replace the coarse images to be fed into SARFM, to obtain
the final prediction [79]. The flexible spatiotemporal data fusion (FSDAF) first conducts unmixing to
get a transitional prediction and a residual between transitional prediction and the interpolated coarse
image in the predicted date. Then, the residual is distributed in fine resolution scales. Finally, a weighted
strategy is used to further improve the prediction [80]. The improved FSDAF modifies the FSDAF by
introducing a constrained least squares process to combine the increment from unmixing and that from
the interpolation of coarse images [81]. The method in [82] combines STARFM and an unmixing strategy
in the same way as USTARFM. The spatial-temporal remotely sensed images and land cover maps fusion
model uses an unmixing strategy and Bayesian theory to fuse coarse image series and a few land-cover
maps from fine images to generate a land-cover map series with high spatial resolution [83]. The enhanced
linear STF method characterizes the slope and intercept of the linear model as the residual caused by
systematic biases, and then calculates them based on spectral unmixing theory to obtain the final pre-
diction. Then, a weight strategy is used to enhance the prediction [84]. The integrated framework to
blend spatiotemporal temperatures adopts a similar idea as the one pursued by FSDAF to blend the land
surface temporal changes from Landsat, MODIS and images from a geostationary satellite (FY-2F) [85].
The improved ESTARFM introduces an unmixing strategy to improve the accuracy of spectrally similar
pixels in ESTARFM [86]. The NDVI-Bayesian spatiotemporal fusion model first uses a multi-year aver-
age MODIS NDVI time series to constrain the unmixing process in a Bayesian framework to obtain the
initial downscaled NDVI, and then uses the relation between the initial NDVI and real Landsat NDVI
(on other dates) to generate high spatial and temporal resolution NDVI data [87]. Finally, the improved
Bayesian data fusion approach improves the performance of STBDF in heterogenous areas by introducing
an unmixing stragety [88].

3 Datasets

In this section, we describe our benchmark, which consists of three Landsat-MODIS datasets (called
hereinafter AHB dataset, Tianjin dataset and Daxing dataset) that are respectively collected over Ar
Horqgin Banner of Inner Mongolia province, Tianjin city, and Daxing district of Beijing, China. These
datasets are specifically intended to perform STF. All the fine resolution images (i.e., the Landsat images)
are acquired by Landsat-8 OLI with six bands, including the blue band (0.45-0.51 pum), the green band
(0.53-0.59 pm), the red band (0.64-0.67 pm), the near-infrared band (0.85-0.88 um), the short-wave
infrared-1 band (1.57-1.65 um), and the short-wave infrared-2 band (2.11-2.29 um). The coarse resolution
images (i.e., the MODIS images with 500 m spatial resolution) are geometrically transformed with respect
to the corresponding Landsat images. In the AHB dataset, these images are MOD09GA images, and in the
Tianjin and Daxing datasets, these images are MODO02HKM. The bands considered in the MODIS images
are selected and reordered to match the Landsat images. Both the Landsat images and the MOD0O2HKM
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Table 1 Summary of the three considered datasets

Dataset Image size Pairs Timespan Main change

AHB 2480x2800x 6 27 2013/05/30 — 2018/12/06 Phenological changes in rural areas
Tianjin 2100x1970x6 27 2013/09/01 — 2019/09/18 Phenological changes in urban areas
Daxing 1640x1640x6 29 2013/09/01 — 2019/11/05 Land-cover changes

Figure 1 (Color online) Example pairs from the AHB dataset.

images are atmospherically corrected by the Quick Atmospheric Correction (QUAC) algorithm. The
summary of them is shown in Table 1. In the following, we provide a detailed description of the three
datasets that conform our benchmark.

3.1 AHB dataset

The main purpose of this dataset is to provide a benchmark for testing the accuracy of STF methods in
the task of detecting phenological changes in rural areas. The Ar Horqgin Banner (43.3619°N, 119.0375°E)
is located in the northeast of China. Agriculture and animal husbandry are the major industries of Ar
Horqgin Banner, for which there are a lot of circular pastures and farmlands. In this site, we collected 27
cloud-free Landsat-MODIS image pairs from 2013/05/30 to 2018/12/06, with a timespan of more than
5 years. This area experienced significant phenological changes owing to the growth of crops and other
kinds of vegetation. Four pairs of AHB datasets are displayed in the 1st and 2nd rows of Figure 1, from
which we can infer that this area is heterogenous and with significant phenological changes.

3.2 Tianjin dataset

The main purpose of this dataset is to provide a benchmark for testing the accuracy of STF methods
in the task of detecting phenological changes in urban areas. Tianjin (39.8625°N, 117.8591°E) is a
municipality in the north of China with clear seasonal changes during the year. The Tianjin dataset
includes 27 cloud-free Landsat-MODIS image pairs from the 2013/09/01 to 2019/09/18. For illustrative
purposes, Figure 2 shows a few sample images from this dataset, from which we can see that there are
significant phenological changes in these six pairs.

3.3 Daxing dataset

The main purpose of this dataset is to provide a benchmark for evaluating the performance of STF in
the task of detecting land-cover changes. The Daxing dataset includes 29 cloud-free Landsat-MODIS
image pairs from 2013/09/01 to 2019/11/05, collected from the Daxing district (39.0009°N, 115.0986°E)
located in the south of Beijing city. The Beijing Daxing international airport, which was constructed
between December 2014 to September 2019, is exactly inside this site, representing a gradual land cover



Li J, et al. Sci China Inf Sci  April 2020 Vol. 63 140301:8

Figure 2 (Color online) Example pairs from the Tianjin dataset.

Figure 3 (Color online) Example pairs from the Daxing dataset.

change. In addition, this dataset contains an obvious phenological change as well. Four pairs of the
Daxing dataset are displayed in the last two rows of Figure 3, from which we can observe that there are
obvious land-cover changes in these pairs.

At this point, we would like to emphasize that the considered benchmark exhibits the following char-
acteristics.

e Diversity of regions: representing rural, urban and mixed regions.
e Long timespan: 5 years or more.

e Challenging scenarios: suffering from phenological changes, land-cover changes, and heterogeneity,
with different types of changes.

Finally, we would like to point out that there is significant strip noise in the two short-wave infrared
bands in the MODIS images, which brings a great challenge for STF and will not be taken into account
in our experiments in Section 4. Nevertheless, we keep these two bands in our datasets as we believe that
this issue should be taken into account in future developments. The aforementioned benchmark datasets

are available online??).

1) This is mainly for Chinese scholars. https://pan.baidu.com/s/lymgud6tnY6XB5CTCXPUfnw.
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The 23rd pair The 24th pair

Figure 4 (Color online) Test data from the AHB dataset, where the 1st row displays the MODIS images and the 2nd
row displays the Landsat images.

The 22nd pair The 23rd pair The 24th pair

Figure 5 (Color online) Test data from Tianjin dataset.

4 Experiments

4.1 Experimental results of baseline methods

To offer a baseline performance as a reference, in our first experiment we test five standard STF meth-
ods, including STARFM [16], ESTARFM [18], FSDAF [80], STFDCNN [65], and BiaSTF [72] on the
considered benchmark. The parameters of these methods are set according to the original contributions
to ensure their optimal performance. For the AHB dataset, we choose the 23rd, 24th and 25th pairs as
the test data. Similarly, the 22nd, 23rd and 24th pairs of Tianjin dataset, the 25th, 26th and 27th pairs
of Daxing dataset are selected. Figure 4 displays the three selected image pairs from AHB dataset, while
the pairs for Tianjin dataset and Daxing dataset are displayed in Figures 5 and 6, respectively.

Tables 2—4 show the quantitative assessment of the aforementioned standard STF methods. It can be
observed that, for the AHB dataset, the ESTARFM and BiaSTF obtain the best performance. Generally
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The 25th pair The 26th pair The 27th pair

Figure 6 (Color online) Test data from Daxing dataset.

Table 2 Quantitative assessment of experimental results on the AHB dataset

Band STARFM ESTARFM FSDAF STFDCNN BiaSTF

Band 1 0.0286 0.0159 0.0300 0.0171 0.0136

RMSE Band 2 0.0355 0.0222 0.0366 0.0244 0.0248
Band 3 0.0552 0.0405 0.0563 0.0419 0.0426

Band 4 0.0666 0.0680 0.0675 0.0675 0.0660

Band 1 0.6781 0.5188 0.7006 0.5684 0.7200

cC Band 2 0.7033 0.7207 0.7296 0.6382 0.7496
Band 3 0.7120 0.7376 0.7371 0.6835 0.7634

Band 4 0.6972 0.7260 0.7232 0.6416 0.7313

Band 1 0.7922 0.8432 0.7828 0.8441 0.9026

SSIM Band 2 0.7795 0.8442 0.7818 0.8065 0.8499
Band 3 0.7263 0.7765 0.7331 0.7489 0.7942

Band 4 0.7411 0.7574 0.7572 0.7017 0.7649

ERGAS 2.007 1.3899 2.0730 1.849 1.3963
SAM 0.110 0.0800 0.1159 0.0941 0.0720

speaking, BiaSTF achieves better or competitive results when compared to other methods. It is also
remarkable that STFDCNN also obtains very promising performance. The other three standard methods
generally exhibit worse performance than that obtained by learning based methods, i.e., BiaSTF and
STFDCNN.

Finally, Figures 7-9 display the predicted images of all considered STF methods, along with the ground
truth pairs. It can be observed that all the methods achieve good performance.

4.2 Experimental results of deep learning based methods

In this subsection, we report the experiments conducted on our benchmark dataset using two deep
learning based methods, i.e., STFDCNN [65] and BiaSTF [72], where STFDCNN models the change
from coarse images and BiaSTF considers the sensor bias in the modeling. The main reasons why we
consider these two CNN-based methods for evaluation purposes are three-fold: (1) the first experiment
demonstrates the strong potential of learning based methods, which generally achieve better performance
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Table 3 Quantitative assessment of experimental results on the Tianjin dataset

Band STARFM ESTARFM FSDAF STFDCNN BiaSTF

Band 1 0.0241 0.0212 0.0226 0.0274 0.0234

RMSE Band 2 0.0312 0.0240 0.0297 0.0389 0.0242
Band 3 0.0375 0.0342 0.0347 0.0452 0.0310

Band 4 0.0896 0.1425 0.0872 0.0602 0.0853

Band 1 0.8385 0.8612 0.8462 0.7693 0.8193

cC Band 2 0.7740 0.8367 0.7812 0.5980 0.8301
Band 3 0.6863 0.7957 0.7147 0.6191 0.7985

Band 4 0.6883 0.3121 0.7155 0.8179 0.7264

Band 1 0.8722 0.8886 0.8813 0.8220 0.8582

SSIM Band 2 0.8158 0.8640 0.8222 0.6821 0.8579
Band 3 0.7430 0.8127 0.7651 0.6752 0.8220

Band 4 0.6874 0.3258 0.7000 0.8117 0.7204

ERGAS 1.6180 1.7313 1.5304 1.9832 1.4292
SAM 0.1965 0.1656 0.1766 0.1574 0.1443

Table 4 Quantitative assessment of experimental results on the Daxing dataset

Band STARFM ESTARFM FSDAF STFDCNN BiaSTF

Band 1 0.0124 0.0152 0.0127 0.0177 0.0121

RMSE Band 2 0.0161 0.0160 0.0159 0.0187 0.0153
Band 3 0.0221 0.0219 0.0213 0.0251 0.0209

Band 4 0.0429 0.0509 0.0419 0.0519 0.0456

Band 1 0.9397 0.9338 0.9406 0.9038 0.9478

cC Band 2 0.9239 0.9307 0.9284 0.9120 0.9324
Band 3 0.8962 0.8985 0.9025 0.8768 0.9062

Band 4 0.7775 0.7079 0.7885 0.7020 0.7486

Band 1 0.9556 0.9434 0.9543 0.9226 0.9594

SSIM Band 2 0.9398 0.9429 0.9410 0.9277 0.9452
Band 3 0.9140 0.9155 0.9176 0.8962 0.9218

Band 4 0.8011 0.7371 0.8109 0.7320 0.7753

ERGAS 0.9642 1.0436 0.9524 1.3085 0.9328
SAM 0.0673 0.0706 0.0660 0.0794 0.0658

FSDAF STFDCNN BiaSTF

Figure 7 (Color online) Ground truth image and obtained predictions for the AHB dataset.
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STARFM ESTARFM

FSDAF STFDCNN BiaSTF

Figure 8 (Color online) Ground truth image and obtained predictions for the Tianjin dataset.

Ground truth STARFM

FSDAF STFDCNN BiaSTF

Figure 9 (Color online) Ground truth image and obtained predictions for the Daxing dataset.

than the other methods; (2) these methods are based on deep learning concepts, which are the current
state-of-the-art for STF methods; (3) one of the main characteristics of our new benchmark dataset is
that it offers the possibility to evaluate deep learning methods. We decide to focus on the STFDCNN
and BiaSTF methods for validation purposes owing to their performance in the previous experiment.
For more details, we refer to the original contribution in [65,72]. Notice again that the parameters of
the two methods are set according to [65,72] to ensure their optimal performance. Furthermore, in all
experiments, the last ten pairs are used for testing and the rest are used for training. Concerning the
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Table 5 Quantitative assessment of the obtained results in the three considered benchmark datasets

AHB dataset Tianjin dataset Daxing dataset
Pair STFDCNN BiaSTF Pair STFDCNN BiaSTF Pair STFDCNN BiaSTF
18th 0.0270 0.0180 18th 0.0413 0.0509 20th 0.0379 0.0379
19th 0.0316 0.0304 19th 0.0417 0.0515 21st 0.0386 0.0355
20th 0.0325 0.0247 20th 0.0633 0.0846 22nd 0.0425 0.0456
21st 0.0477 0.0394 21st 0.0463 0.0459 23rd 0.0333 0.0394
RMSE 22nd 0.0265 0.0237 22nd 0.0471 0.0399 24th 0.0410 0.0394
23rd 0.0222 0.1910 23rd 0.0429 0.0409 25th 0.0258 0.0231
24th 0.0377 0.0367 24th 0.0549 0.0910 26th 0.0283 0.0234
25th 0.0295 0.0436 25th 0.0502 0.0497 27th 0.0315 0.0292
26th 0.0277 0.0296 26th 0.0321 0.0264 28th 0.0289 0.0295
27th 0.0308 0.0397 27th 0.0333 0.0355 29th 0.0463 0.0309
18th 0.7455 0.8898 18th 0.7479 0.8198 20th 0.8117 0.8471
19th 0.6883 0.8204 19th 0.6501 0.8198 21st 0.7583 0.8095
20th 0.6489 0.8011 20th 0.4795 0.6049 22nd 0.7100 0.7285
21st 0.5427 0.7877 21st 0.6683 0.7573 23rd 0.8179 0.8837
Iele 22nd 0.7183 0.8159 22nd 0.7558 0.7842 24th 0.7329 0.8834
23rd 0.6382 0.6593 23rd 0.7010 0.7935 25th 0.8456 0.8869
24th 0.6329 0.7411 24th 0.6797 0.7616 26th 0.8486 0.8837
25th 0.6136 0.7698 25th 0.7282 0.7889 27th 0.8406 0.8686
26th 0.6216 0.7030 26th 0.8648 0.9096 28th 0.8653 0.8705
27th 0.4892 0.6218 27th 0.8809 0.8552 29th 0.7276 0.8050
18th 0.8222 0.9243 18th 0.7874 0.8106 20th 0.8433 0.8607
19th 0.7740 0.8552 19th 0.7320 0.6545 21st 0.7868 0.8405
20th 0.7301 0.8495 20th 0.5516 0.6373 22nd 0.7509 0.7231
21st 0.6268 0.7552 21st 0.7126 0.7730 23rd 0.8278 0.8581
SSIM 22rd 0.8016 0.8637 22rd 0.7585 0.8086 24th 0.7603 0.8599
23nd 0.8148 0.8372 23nd 0.7477 0.8146 25th 0.8719 0.9040
24th 0.7753 0.8279 24th 0.7196 0.7560 26th 0.8696 0.9004
25th 0.7584 0.7043 25th 0.7556 0.7964 27th 0.8565 0.8783
26th 0.7781 0.7911 26th 0.8766 0.9202 28th 0.8845 0.8843
27th 0.6853 0.6996 27th 0.8868 0.8677 29th 0.7184 0.8352
18th 0.8165 0.5345 18th 2.1370 2.4416 20th 1.3017 1.3017
19th 1.1292 1.2540 19th 1.7090 1.9960 21st 1.4559 1.1097
20th 1.2808 0.7552 20th 2.5530 1.9970 22nd 1.9421 1.8862
21st 2.7802 2.5355 21st 2.3168 2.2868 23rd 1.5581 1.4893
ERGAS 22rd 3.9073 3.7836 22rd 2.0626 1.7757 24th 1.5646 1.9691
23nd 1.1872 1.3057 23nd 1.9832 1.5954 25th 1.1212 0.9930
24th 1.8490 1.3963 24th 1.8920 1.7864 26th 1.3085 0.9328
25th 1.9249 7.5260 25th 2.4567 2.1757 27th 1.8015 1.5930
26th 1.8163 1.9451 26th 1.7705 1.4810 28th 1.5409 1.5033
27th 2.7139 2.2231 27th 1.8223 1.6771 29th 2.3941 1.0790
18th 0.0908 0.0394 18th 0.1393 0.1345 20th 0.0825 0.0663
19th 0.1204 0.0790 19th 0.1200 0.1210 21st 0.1343 0.1052
20th 0.1422 0.0809 20th 0.1429 0.1645 22nd 0.1640 0.2008
21st 0.2570 0.2461 21st 0.1843 0.1791 23rd 0.1300 0.0919
SAM 22nd 0.2756 0.2247 22nd 0.1925 0.1422 24th 0.1266 0.0896
23rd 0.1299 0.1265 23rd 0.1574 0.1443 25th 0.0746 0.0689
24th 0.0941 0.0720 24th 0.1699 0.1462 26th 0.0794 0.0658
25th 0.1864 0.3368 25th 0.1567 0.1577 27th 0.0782 0.0706
26th 0.2056 0.2623 26th 0.1050 0.0836 28th 0.0768 0.0729
27th 0.3030 0.2663 27th 0.1007 0.0865 29th 0.1604 0.0935

quantitative metrics, we select five widely used ones to assess the results, including the root mean square
error (RMSE), the structure similarity (SSIM) [89], the correlation coefficient (CC), the erreur relative
global adimensionnelle de synthese (ERGAS) [90], and the spectral angle mapper (SAM).

A quantitative evaluation of our experimental results is summarized in Table 5. Notice that the RMSE,
CC and SSIM in this table refer to the average of all four bands. It can be observed that, in general, both
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the STFDCNN and BiaSTF methods provide relatively good results, while in most cases the BiaSTF
outperforms the STFDCNN. This is because the BiaSTF considers the sensors bias in the modeling.

5 Conclusion and future lines

In this review, we introduce a new robust benchmark dataset for the evaluation of spatio-temporal fusion
(STF) algorithms. The proposed benchmark possesses three important characteristics: (1) diversity of
regions, (2) long timespan, and (3) challenging scenarios, and comprises Landsat and MODIS images
collected over Inner Mongolia province, Tianjin city, and Daxing district of Beijing, China, respectively.
This article also provides a survey of highly representative STF techniques, along with a detailed quanti-
tative and qualitative comparison of the performance of some of the most representative STF techniques
(including traditional ones and deep learning-based ones) with our newly presented benchmark dataset
(which is especially suitable for evaluation deep learning-based STF methods). Our experimental results
suggest that deep learning methods that model sensors bias lead to better results in terms of STF. Our
future work will be mainly focused on evaluating additional STF methods and expanding the benchmark
with additional pairs covering challenging scenarios over a diversity of regions and with long timespan in
the considered cases.
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