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Abstract
Deep neural networks are currently trained under data-parallel setups on high-per-
formance computing (HPC) platforms, so that a replica of the full model is charged 
to each computational resource using non-overlapped subsets known as batches. 
Replicas combine the computed gradients to update their local copies at the end of 
each batch. However, differences in performance of resources assigned to replicas in 
current heterogeneous platforms induce waiting times when synchronously combin-
ing gradients, leading to an overall performance degradation. Albeit asynchronous 
communication of gradients has been proposed as an alternative, it suffers from the 
so-called staleness problem. This is due to the fact that the training in each rep-
lica is computed using a stale version of the parameters, which negatively impacts 
the accuracy of the resulting model. In this work, we study the application of well-
known HPC static load balancing techniques to the distributed training of deep mod-
els. Our approach is assigning a different batch size to each replica, proportional to 
its relative computing capacity, hence minimizing the staleness problem. Our exper-
imental results (obtained in the context of a remotely sensed hyperspectral image 
processing application) show that, while the classification accuracy is kept constant, 
the training time substantially decreases with respect to unbalanced training. This is 
illustrated using heterogeneous computing platforms, made up of CPUs and GPUs 
with different performance.
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1 Introduction

Deep learning (DL) algorithms based on neural network architectures [19] have 
reached great accuracy in areas such as image classification [17, 20] and speech 
recognition [5] among others. When compared with other machine learning (ML) 
and pattern recognition methods, deep neural networks (DNNs) work as universal 
approximators of parameterized maps (models) composed of stacks of layers [12], 
where each one is composed by several nodes (neurons) connected to the nodes of 
the precedent and subsequent layers through synaptic weights and saturation control 
biases [22]. Overall, DNN models fit neuron weights and biases through an iterative 
optimization process based on training with examples. Improvements with respect 
to traditional techniques are supported by the large amount of data available to train 
these models, as well as by advances in high-performance computing (HPC) plat-
forms [9].

DNN learning strategies can be roughly classified into supervised and unsuper-
vised learning [14], depending on whether they use labeled data or not. This work 
focuses on supervised image classification with DNNs, whose input dataset, X  , is 
composed of nexamples images of �n ∈ ℝ

h×w×c ( n = 1,… , nexamples ), where h × w 
denotes the spatial dimensions of the images (i.e., height and width) and c the spec-
tral depth (i.e., the number of channels). X  is divided into two main subsets. The 
first one is the so-called training set, on which the classifier adjusts its weights and 
biases. The second set is the test set, on which the classifier makes the inference. 
With this in mind, it is easy to describe the DNN for image classification as a map-
ping model M(⋅, �) with parameter � that performs M ∶ X → Y , associating each 
image of the original dataset ( X  ) with a corresponding label ( Y ) by adjusting the 
parameters of the model � . On this wise, the purpose of supervised learning is to 
find optimal 𝜃⋆ values in order to minimize the distance between the outputs of the 
model and the labeled values. Such distance is determined by the so-called loss 
function L(�) (e.g., mean square error) during the training stage. The Stochastic Gra-
dient Descent (SGD) method is commonly used for this purpose. In each iteration k, 
SGD updates � through gradient gk of L(�) as �k+1 = �k − � gk , where � is the so-
called learning rate, which controls the advance in the weight domain. gk is com-
puted as gk = 1

���
∑

n∈� ∇l(n��k), being l(n|�k) the loss of the example n, computed 
on �k .

The updating process demands high computational capacity. To accelerate it, 
dedicated HPC clusters and non-dedicated cloud platforms are commonly used for 
large-scale deep networks training on large datasets. The training process is usually 
distributed on the platform resources based on two main schemes of parallelization, 
known as model parallelism and data parallelism.

Model parallelism is used when the model is too large to fit in the memory of 
an isolated computational resource, and hence, it is split and deployed among the 
available resources. Every process trains its own portion of the model using the 
same batch of examples. Depending on the deployment of the model, learners 
communicate intermediate results using different strategies [13]. As training is an 
inherently sequential process, this scheme could result in the underexploitation of 
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the computational resources, as its performance is limited by the communication 
between the processes and by the number of nodes involved in the training process.

Conversely, data parallelism consists of running replicas of the training model 
on the available computational resources. Every replica holds a local copy of the 
entire model, which is trained on disjoint data subsets of � called batches [18]. After 
every batch in the training step is completed, replicas compute the gradients of their 
respective loss function. Next, they coordinate to combine their local computed gra-
dients before updating � , commonly by tree reduction collective communications 
[23], or pushing gradients to centralized parameter servers [7]. Needless to say, 
these synchronization points cause straggler processes to have a high impact on the 
overall performance. Furthermore, performance degradation grows with the hetero-
geneity of the platform and the number of replicas used to train the model. Model 
and data types of parallelism can be combined in order to mitigate their limitations 
in some particular scenarios. This is known as hybrid parallelism.

Two general mechanisms contribute to solve the aforementioned performance 
issue. First, using an asynchronous SGD optimization procedure to relax the consist-
ency of parameter values by allowing processes to asynchronously combine gradi-
ents and update parameters. This scheme decouples communication and computa-
tion, which highly benefits the training performance. However, the order in which 
parameters are updated is not deterministic, and hence gradient computations in a 
replica are done on a stale version of parameter values. This distance between a 
local parameter used to compute gradients in a replica and its global current value is 
known as staleness. Empirical studies [7] show that a low degree of staleness does 
not penalize the learning accuracy of the model. Meanwhile, other works [10] pro-
pose mechanisms for reducing staleness impact on the accuracy of training models.

A second approach to mitigate staleness consists of using load balancing tech-
niques to assign to each replica an amount of work which is in accordance with its 
computational capacity. A dynamic load balancing mechanism is proposed in [3], in 
which, in each epoch, every replica is assigned with a batch size proportional to its 
speed. A key point is to determine the speed of each replica in the system, and this 
is achieved by using an additional recurrent neural network that calculates the size 
of the batch in the next epoch as a function of the current speed and processing time. 
A non-dedicated cloud platform is assumed in this context, with shared assigned 
computing resources and, hence, variable speed and memory parameters. Although 
adaptive (and partially able to deal with stragglers due to temporal speed variations), 
this mechanism requires a large number of epochs to be effective and steals compu-
tational resources from the main training process.

In this paper, we introduce a new mechanism for improving the distributed per-
formance of the training process of deep models, while keeping their accuracy. Our 
methodology follows a two-step approach. First, prior to the training, we use the 
FuPerMod tool [6] to determine the computational capabilities of the computational 
resources assigned to each replica in the platform. We assume dedicated hetero-
geneous clusters made up of both CPUs and GPUs. Secondly, in the training step, 
we assign a batch size to each replica that is proportional to its relative speed. The 
goal is to balance the workload and, as a consequence, to minimize the communica-
tion of the waiting times of the replicas at the time of communicating the computed 
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gradients. We use the synchronous SGD with reduction tree communication to com-
bine gradients, which ensures deterministic order in combining the per-replica com-
puted gradients, and hence it does not affect the overall accuracy.

The static load balancing technique has been widely used in the HPC field [1, 
21], because it does not require any additional computational resources during 
the execution time of an application. Notwithstanding this fact, especially in non-
dedicated platforms where the workload variation is higher, it can be combined 
with other mechanisms, such as those proposed in [3] to perform fine-grained and 
dynamic adaptations during the training stage. Furthermore, this can be combined 
with asynchronous SGD techniques, such in [4], to ensure minimal staleness. Hence, 
the primary contributions of this work are:

• A new methodology to improve the performance of data-parallel distributed 
training of deep models, while preserving the accuracy of the trained model 
when replicas run on dedicated heterogeneous platforms.

• The application of common HPC-based static workload balancing techniques for 
training deep models, in order to optimize resource exploitation and execution 
times.

• An evaluation of the impact of the heterogeneity of dedicated computing plat-
forms on the deep network distributed training process.

The rest of this paper is organized as follows. First, we discuss related works in 
Sect. 2. Section 3 describes our implementation, including the distribution of pro-
cesses on the heterogeneous platform and the training model procedure. Section 4 
details how we evaluated our system and presents the obtained results. Finally, 
Sect. 5 presents our conclusions and future work.

2  Related work

The increase in dataset sizes and the number of parameters to learn in deep models 
have leveraged the usage of HPC platforms to accelerate training, including dedi-
cated clusters and non-dedicated cloud environments. The work in [2] provides an 
excellent survey of current distributed techniques to parallelize and distribute the 
training. The main data and model parallelization schemes are described in work 
[16] that proposes a distribution training of convolutional networks [19] using data 
parallelism in convolutional layers and model parallelism in fully connected layers, 
as well as different synchronization methods for parameter updating between work-
ers. In this paper, we focus on the data parallelism scheme applied to convolutional 
networks.

Paper [7] proposes the Downpour asynchronous SGD algorithm implemented in 
the DistBelief framework. This framework enables large-scale model and data paral-
lelism for training purposes. The Downpour algorithm launches multiple replicas 
of the model using data parallelism, and it uses asynchronous SGD gradient com-
munication based on a centralized parameter server. Authors empirically found that 
reaching a certain level of staleness tolerance does not significantly impact the model 
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accuracy. Nevertheless, work [10] proposes a mechanism for reducing the staleness 
of the asynchronous SGD by modulating the learning rate using the current average 
gradient staleness values. They provide a discussion on the interplay of hyperpa-
rameters and distribution design choices, using the implemented Rudra framework. 
The staleness problem is also addressed in [4], using a different approach. This 
work performs data-parallel training of models by using p backup workers in addi-
tion to P replicas and data-parallel synchronous optimization. In order to update the 
model parameters, it considers P faster gradient computations and drops the rest. 
This approach reduces staleness and performance degradation caused by straggler 
replicas, at the expense of using additional resources. In this paper, we follow a syn-
chronous SGD approximation method that avoids the staleness problem, although it 
is more sensitive to waiting times at synchronization.

Focusing on heterogeneous platforms, work [15] studies the performance degra-
dation of SGD optimization in heterogeneous platforms (with respect to homoge-
neous distributed training schemes). They focused on a Stale Synchronous Parallel 
synchronization scheme, in which the grade of staleness is limited by the updating 
protocol and the parameter server. The authors propose both constant and dynamic 
learning rate schedules for updating the parameters. In this way, the unstable conver-
gence caused by stragglers is mitigated, improving statistical and hardware perfor-
mance. A key difference with respect to our work is that we use collective communi-
cation as synchronization mechanism, avoiding the necessity of additional parameter 
server processes.

The thorough work in [3] proposes to adapt batch sizes in each replica to their 
relative speeds. As a consequence, straggler replicas waiting times are minimized. 
Authors use a Bulk Synchronous Parallel scheme (which avoids staleness) on heter-
ogeneous non-dedicated cloud platforms, with simulated injected stragglers in their 
experiments. The measurement of the respective speed of the replicas (needed to 
compute their assigned batch sizes) is achieved using a Recurrent Neural Network, 
trained along epochs with per-replica CPU performance and memory usage values 
in each iteration. It is worth noting that our work follows a similar approach to those 
adapting batch sizes in replicas to their computational performance. However, a nov-
elty of our work is to introduce an offline and static load balance mechanism which 
does not interfere with the training of the model. Work [3] offers additional insights 
that we plan to include in future works, such as conducting weighted gradient aggre-
gation to avoid per-sample biases in replicas.

3  Detailing the adopted approach

This section details our proposal for training of deep models1 following a data-
parallel scheme. We assume a dedicated heterogeneous platform made up of a set 
of computational nodes, with different speeds. Nevertheless, our approach can also 
be applied to non-dedicated cloud environments as an initial workload distribution, 

1 The source code is available at https ://githu b.com/mhaut /stati c_load_deepl earni ng.

https://github.com/mhaut/static_load_deeplearning


 S. Moreno-Álvarez et al.

1 3

or assuming the possible variations in performance. Replicas running the training 
process are deployed on the computing nodes of the platform, commonly multicore 
CPUs and GPUs with different numbers of cores and processing speeds on current 
heterogeneous platforms.

A key issue is to accurately determine the speed of each node. In this regard, 
FuPerMod is a tool that is commonly used in heterogeneous HPC platforms. It deter-
mines empirically the computational capabilities of a node running a given applica-
tion. To achieve that, the tool executes a benchmark (provided by the user) in each 
compute node. This benchmark should be representative of the application in order 
to obtain meaningful execution profiles. In this work, we use a convolutional neural 
network (on a range of batch sizes) as the benchmark to measure the speed in each 
replica. As output, FuPerMod returns the speed of the P computational nodes in the 
heterogeneous platform, as a set of P functions S = {s1(x), s2(x),… , sP(x)} . A func-
tion sp(x) varies along a given range of batch sizes x to represent the performance 
profile of a computational node, which depends on its available resources (including 
cache and memory sizes). FuPerMod speed is provided as the inverse of the time 
invested in executing the benchmark for a given batch size |B|.

It is important to note that the set of speed functions S characterizing the platform 
is statically determined in a previous initialization step. Observe Fig. 1. The speed 
functions, together with the specific batch size |B|, are used as inputs to the FuPer-
Mod partitioner utility, which computes the number of examples |Bp| assigned to 
each replica p, with 

∑P

p=1
�Bp� = �B� . As FuPerMod partitioner works with sizes in 

Fig. 1  General distributed learning framework of a model using static load balance mechanisms. The 
figure represents an iteration k of an epoch in the training process, where P = 3 replicas are assigned 
with an uneven batch size Bp . Replicas perform the parameter update after communicating gradients ( gk ) 
using the MPI_Allreduce collective operation
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bytes, we convert the input batch size to bytes using h × w × c × r × |B| , with r the 
number of bytes to represent each pixel.

To train the model, SGD works as a synchronous iterative process over multiple 
passes of the dataset, called epochs. In each epoch, the dataset � is split up in P 
subsets and assigned to the P corresponding replicas. The size of the subset in a 
replica p is computed as |�|∕|B| × |Bp| . Furthermore, the distribution of the dataset 
to the replicas is made in such a way that batches assigned to replicas do not overlap 
in each epoch and, additionally, every replica trains its own copy of the model on 
the full set of examples along epochs. Then, replicas use their assigned subsets in 
batches to train their copies of the model. A description of the process is shown in 
Fig. 1. Iteration k of the SGD training process performs the following general steps: 

1. Every replica p manages a batch of |Bp| examples, with �B� =
∑P

p=1
�Bp� . The size 

of the batch Bp is proportional to the relative speed of the replica p, running on 
computational resources with speed sp(|Bp|).

2. Replicas compute their gradients based on a Loss function l(n|�k
p
) that returns the 

error of the sample n ∈ Bp , computed in the iteration k using parameters �k
p
 with 

respect to the actual value. The gradient computation in a replica p is 
gk
p
=

1

�Bp�
∑

n∈Bp
∇l(n��k

p
).

3. After computing the gradient vectors gk
p
 , each replica delivers a collective all-

reduce communication operation in order to combine gradients as: gk = 1

P

∑P

p=1
gk
p

4. Each replica updates the parameters using the received gradients and �.

We use PyTorch to train a model based on the previous steps. It implements MPI 
blocking collectives [8], which impose synchronization, and hence, straggler pro-
cesses degrade performance. The proposed methodology is also compatible with the 
use of a parameter server that holds an updated global copy of the parameters The 
main drawback of this approach is its centralized nature that is mitigated by dis-
tributing parameters on several server processes [7] and the resources consumed by 
such additional server processes.

Finally, balancing the workload according to the replicas that determined compu-
tational capacity ensures that all replicas finish iteration k at the same time, avoiding 
idle times at the communication step and hence improving the overall performance. 
Of course, an error in the workload balancing may always exist, depending on errors 
in the measurement of the speed of the replicas using benchmarking, and on the 
granularity of the example size, which we consider negligible. A limitation of this 
methodology is that a static workload assignment to replicas does not adapt to tem-
poral changes in the system loads derived from the shared usage of resources in non-
dedicated platforms. We indeed assume a homogeneous network, and hence, we do 
not account for the influence of possible imbalances in the gradients communication 
performance in the model training.

At this point, it is important to note that [3] presents a weighted aggregation in 
the gradient computation for assigning every example with the same worth, as 
gk =

1

�B�
∑P

p=1
gk
p
 . This improvement does not affect the performance, although it 

certainly has an impact in the convergence of the model.
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4  Experimentation and analysis

This section evaluates the proposed approach. We detail first the hardware and 
software elements, and then we discuss the results of the training tasks in terms 
of performance and accuracy. To conclude, we experimentally test the proposed 
load balanced implementation in ResNet [11], a relevant and standard architec-
ture in the field.

A small test platform called Metropolis is used to obtain initial insights and 
results of the behavior of the implementation and also a dedicated heterogene-
ous HPC cluster called Ceta-Ciemat to obtain real and more complete results of 
our implementation in a real environment. Metropolis is composed of two nodes, 
Pluton and Caronte, that use three different GPUs: an NVIDIA RTX 2080Ti and 
an NVIDIA RTX 2060 (connected to Pluton) and an NVIDIA RTX 1050Ti (con-
nected to Caronte), with 11 GB, 6 GB and 4 GB of memory, respectively. The 
CPUs are an Intel Xeon E5620 (Nehalem) 8-core processors running at 2.40 GHz 
with 12 GB of RAM. Nodes are connected by an Ethernet GigaBit network. Five 
replicas are deployed in that set of computational nodes. A CPU core is reserved 
for each replica running on a GPU, in order to be used for memory transfers 
and communications. On the other hand, the Ceta-Ciemat cluster is composed 
of eight multicore CPU nodes connected by an InfiniBand QDR Network. Each 
CPU node holds one or two Kepler K80 GPUs with 24 GB of RAM. The CPUs 
are a 24-core Intel Haswell running at 2.50 GHz with 64 GB of RAM. Although 
all GPUs are similar, we experimentally found significant differences in speed 
between nodes using one GPU with respect to nodes using two GPUs. The reason 
is that GPUs share the PCI bus, which impacts the performance of data trans-
fers between CPUs and GPUs. Such subtle performance penalties can be found in 
other platforms.

We trained our models using two standard datasets, MNIST and CIFAR-10. 
MNIST is composed of black and white handwritten digits images, represent-
ing digits from 0 to 9, with a training set of 60.000 examples and a test set of 
10.000 examples. These digits have been normalized in size and centered to a 
fixed image size of 28 × 28 × 1 of 32-bit floats. CIFAR-10 contains 60.000 color 
images of size 32 × 32 × 3 of 10 non-biased classes. This dataset is used to verify 
that the proposed implementation provides successful results.

Two models are used in our experiments. Both have a feature extractor com-
posed of several stages of convolutional and pooling layers and a classifier with 
fully connected (FC) layers. Details are shown in Tables 1 and 2. The two-dimen-
sional convolutional layers have been implemented to extract deep features, 
employing the rectified linear unit (ReLU) activation function. The feature maps 
obtained in the convolutional part are reshaped into an unrolled vector represen-
tation to feed the classifier.

As a conduit example, we evaluate the performance of training the model 
described in Table  1 with the MNIST dataset in the Metropolis platform. Per-
formance is measured using wall clock time per epoch. The final results are 
obtained by taking the maximum training time per epoch of the replicas involved 
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in the training process, along five different executions. To obtain our performance 
data, we run e = 10 epochs. As a baseline test, we use a homogeneous (unbal-
anced) distribution of the batch size |B| between replicas in the platform, with 
|Bp| = |B|∕P,∀p . Figure  2 shows the performance data in separate computation 
and communication plots, for a range of batch sizes |B|. The communication time 
is measured from the invocation of the blocking communication operation to the 
reception of the gradients, and it includes waiting times. As expected, replicas 

Table 1  Layers of the 
convolutional neural network 
implemented for classification 
of the MNIST image dataset

Padding is added to convolutional layers for not shrinking the image

Model for MINST (Number of parameters: 21,840)

Layer ID Kernel/neurons Activation funct. Pooling Dropout

Conv1 5 × 5 × 10 ReLU 2 × 2 No
Conv2 5 × 5 × 20 ReLU 2 × 2 No
FC1 50 ReLU – Yes
FC2 n

classes
Softmax – No

Table 2  Layers of the 
convolutional neural network for 
the classification of the CIFAR-
10 image dataset

Padding is added to convolutional layers to avoid shrinking the 
images

Model for CIFAR-10 (Number of parameters: 176,034)

Layer ID Kernel/neurons Activation funct. Pooling Dropout

Conv1 7 × 7 × 10 ReLU 2 × 2 No
Conv2 7 × 7 × 20 ReLU 2 × 2 No
FC1 120 ReLU – No
FC2 84 ReLU – No
FC3 n

classes
Softmax – No

Fig. 2  Computation (left) and communication (right) times of training the model described in Table 1 on 
the MNIST dataset in Metropolis platform for a range of batch sizes, evenly distributed between P = 5 
replicas. The processing time is provided in seconds per epoch
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running on CPUs spend more time in computing their batches of examples than 
those on GPUs, because of their lower computing throughput. As a consequence, 
GPU replicas wait at communication points, degrading overall performance of 
the training process.

Figure  3 illustrates the speeds of the replicas running on the Metropolis com-
putational nodes, obtained by benchmarking using FuPerMod. As expected, high 
differences between GPUs and CPUs are observed, with slight differences between 
processes running in similar resources (either CPUs or GPUs). Figure 4 shows the 
results of the training execution for a range of batch sizes |B|, under the proposed 
static balanced distribution. FuPerMod partitioner unevenly distributed every batch 
B between replicas according to their speeds. Due to the fact that every replica needs 
to complete a similar amount of computing work, communication waiting times 
are dramatically reduced with respect to Fig. 2. This reduction also arises from the 
reduction in the differences of the time lines in the plots. As a consequence, the 
overall performance is significantly improved, as shown in Fig. 5.

We now focus on the Ceta-Ciemat system to validate performance results 
obtained in the previous proof-of-concept Metropolis platform. Figure  6 (top) 

Fig. 3  FuPerMod characteriza-
tion of the computational capa-
bilities of P = 5 replicas running 
on the Metropolis nodes. Speeds 
are shown for a range of batch 
sizes |B|

Fig. 4  Computation (left) and communication (right) times of training the model described in Table 1 on 
the MNIST dataset in Metropolis platform for a range of batch sizes. Batch sizes are unevenly distributed 
between P = 5 replicas, according to their speeds determined by FuPerMod tool. Time is provided in 
seconds per epoch
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shows the performance results obtained after training the model detailed in 
Table  2 with the CIFAR-10 dataset. We use a homogeneous distribution of the 
batch size, hence with |Bp| = |B|∕P,∀p , between P = 16 replicas deployed on 
available computational nodes of the platform. As in the previous platform, we 
have two groups of replicas depending on whether they run on CPUs or GPUs. 
Differences in performance between groups are high; however, slight differences 

Fig. 5  Performance of training 
the model described in Table 1 
on the MNIST dataset for unbal-
anced and balanced distribu-
tions between P = 5 replicas in 
Metropolis 

Fig. 6  Performance times in seconds per epoch of the computation (left) and communication (right) of 
training the model in Table 2, using CIFAR-10 dataset in the Ceta-Ciemat cluster, for increasing batch 
sizes. Top figures represent evenly (unbalanced) distribution and bottom figures represent unevenly (bal-
anced) distribution between P = 16 replicas
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in performance between replicas running on similar resources also impact the 
performance of the entire training process. Note that differences in computation 
(and hence, inversely, in communication, due to waiting times) grow with the 
batch sizes. The corresponding results obtained with a balanced distribution of 
the batch |B| between replicas, according to their speeds, are shown at the bottom 
of Fig. 6. Again, plot lines differences shrink, meaning that replicas invest similar 
times in performing their assigned computing workloads, hence reducing wait-
ing times at communication points. Figure 7 displays the total performance times 
for the two models in Tables  1 and 2, trained, respectively, on CIFAR-10 and 
MNIST on the Ceta-Ciemat platform with P = 16 replicas. Differences between 
unbalanced and balanced distributions remain constant along batch sizes for both 
MNIST and CIFAR-10 datasets. As a summary, the average speedups along the 
range of batch sizes for statically balanced workload distributions—with respect 
to unbalanced ones—are 1.52% and 2.78% , respectively.

Additionally, we evaluate the accuracy, defined as the percentage of correct clas-
sification of examples, given non-biased datasets as MNIST and CIFAR-10. In order 
to show the behavior of the models in both unbalanced (even) and balanced (une-
ven) workload distributions, the batch size is set to |B| = 2048 examples. Figure 8 
shows both per-epoch and temporal evolution of the accuracy of the model trained 
on MNIST. We include the temporal evolution of accuracy to illustrate differences 
in convergence times of the methods with respect to training time. We can observe 
that both distribution approaches require around e = 50 epochs to converge to a 
similar accuracy. Figure 9 shows the corresponding results for CIFAR-10, with the 
difference that the model needs e = 300 epochs to converge on this (larger) dataset. 
We actually executed a higher number of epochs than those shown in both models 
plots; however, we experimentally observe that those values of e were enough for 
the models to converge. Table 3 summarizes the accuracy of the models including 
their standard deviation along five executions. The table shows the accuracy reached 
for MNIST and CIFAR-10 datasets in the Ceta-Ciemat platform for e = 50 and 
e = 300 epochs, respectively. Accuracy figures fall in the same range if we consider 

Fig. 7  Performance times in seconds per epoch for models trained with CIFAR-10 (left) and MNIST 
(right) datasets on the Ceta-Ciemat platform ( P = 16 replicas) for unbalanced and balanced distributions 
of batch sizes between P = 16 replicas
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the standard deviation; hence, there are no significant differences. Nevertheless, the 
aggregation of weighted gradients in the trained process (proposed in work [3] and 
described in Sect.  3) should make accuracy values even closer, without affecting 

Fig. 8  Accuracy of the model described in Table 1, trained on MNIST dataset for unbalanced and bal-
anced distributions of batch sizes |B| in the Ceta-Ciemat platform. Both per-epoch and temporal evolu-
tion of the accuracy are shown. The shaded areas represent the standard deviation along a set of five 
repetitions

Fig. 9  Accuracy of the model described in Table 2 trained on CIFAR-10 dataset for unbalanced and bal-
anced distribution of batch sizes |B| in the Ceta-Ciemat platform. Both per-epoch and temporal evolution 
of the accuracy are shown. The shaded areas represent the standard deviation along a set of five repeti-
tions

Table 3  Maximum accuracy and Last accuracy (obtained in the last epoch) of models described in 
Table 1 and Table 2, trained on MNIST and CIFAR-10 datasets, respectively

The best metric values are in bold

Dataset Maximum accuracy Last accuracy #Epochs

Unbalanced Balanced Unbalanced Balanced

MNIST ��.�� ± 1.47 96.92 ± 0.69 ��.�� ± 1.26 96.58 ± 0.75 e = 50

CIFAR-10 67.54 ± 4.64 ��.�� ± 1.11 66.22 ± 2.45 ��.�� ± 1.10 e = 300
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performance. Finally, as the previous results show that the accuracy remains con-
stant with load balancing, performance tests have been carried out on the main 
ResNet architectures under CIFAR-10. Table  4 shows that the speedup obtained 
remains constant when the number of parameters is not triggered, while with a 
higher number of parameters it achieves a higher speedup. 

5  Conclusions and future work

This paper describes a new approach to distribute the training of deep networks on 
dedicated heterogeneous platforms. The proposed methodology departs from a pre-
computed characterization of the speed of the computational resources of the plat-
form. It provides replicas of the model (running in such computational resources) 
with a batch size that is proportional to their computing capabilities, in such a way 
that waiting times at communication points (performed at each training iteration to 
combine gradients between processes) are eliminated. As a consequence, the overall 
execution time needed for training the deep model is reduced (while the accuracy is 
not significantly affected), as demonstrated for two different platforms and datasets.

One of the main contributions of this work is the exploitation of well-known HPC 
optimization techniques to balance the distributed training of deep learning models. 
Previous works propose dynamic load balancing techniques that impact the perfor-
mance, albeit requiring a high number of iterations to be really effective. In turn, our 
methodology can dynamically adapt batch sizes to performance variations during 
the training process, as a result from the non-dedicated usage of resources (which is 
characteristic of cloud environments).

Our future work will focus on the study of the scalability of the proposed imple-
mentation regarding the number of replicas, using both larger datasets and deeper 
networks.
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