
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-020-03200-6

1 3

Training deep neural networks: a static load balancing
approach

Sergio Moreno‑Álvarez1 · Juan M. Haut2 · Mercedes E. Paoletti2 ·
Juan A. Rico‑Gallego1 · Juan C. Díaz‑Martín2 · Javier Plaza2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Deep neural networks are currently trained under data-parallel setups on high-per-
formance computing (HPC) platforms, so that a replica of the full model is charged
to each computational resource using non-overlapped subsets known as batches.
Replicas combine the computed gradients to update their local copies at the end of
each batch. However, differences in performance of resources assigned to replicas in
current heterogeneous platforms induce waiting times when synchronously combin-
ing gradients, leading to an overall performance degradation. Albeit asynchronous
communication of gradients has been proposed as an alternative, it suffers from the
so-called staleness problem. This is due to the fact that the training in each rep-
lica is computed using a stale version of the parameters, which negatively impacts
the accuracy of the resulting model. In this work, we study the application of well-
known HPC static load balancing techniques to the distributed training of deep mod-
els. Our approach is assigning a different batch size to each replica, proportional to
its relative computing capacity, hence minimizing the staleness problem. Our exper-
imental results (obtained in the context of a remotely sensed hyperspectral image
processing application) show that, while the classification accuracy is kept constant,
the training time substantially decreases with respect to unbalanced training. This is
illustrated using heterogeneous computing platforms, made up of CPUs and GPUs
with different performance.

Keywords Deep learning · High-performance computing · Distributed training ·
Heterogeneous platforms

 * Sergio Moreno-Álvarez
 smoreno@unex.es

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1858-9920
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03200-6&domain=pdf

 S. Moreno-Álvarez et al.

1 3

1 Introduction

Deep learning (DL) algorithms based on neural network architectures [19] have
reached great accuracy in areas such as image classification [17, 20] and speech
recognition [5] among others. When compared with other machine learning (ML)
and pattern recognition methods, deep neural networks (DNNs) work as universal
approximators of parameterized maps (models) composed of stacks of layers [12],
where each one is composed by several nodes (neurons) connected to the nodes of
the precedent and subsequent layers through synaptic weights and saturation control
biases [22]. Overall, DNN models fit neuron weights and biases through an iterative
optimization process based on training with examples. Improvements with respect
to traditional techniques are supported by the large amount of data available to train
these models, as well as by advances in high-performance computing (HPC) plat-
forms [9].

DNN learning strategies can be roughly classified into supervised and unsuper-
vised learning [14], depending on whether they use labeled data or not. This work
focuses on supervised image classification with DNNs, whose input dataset, X , is
composed of nexamples images of �n ∈ ℝ

h×w×c (n = 1,… , nexamples), where h × w
denotes the spatial dimensions of the images (i.e., height and width) and c the spec-
tral depth (i.e., the number of channels). X is divided into two main subsets. The
first one is the so-called training set, on which the classifier adjusts its weights and
biases. The second set is the test set, on which the classifier makes the inference.
With this in mind, it is easy to describe the DNN for image classification as a map-
ping model M(⋅, �) with parameter � that performs M ∶ X → Y , associating each
image of the original dataset (X) with a corresponding label (Y) by adjusting the
parameters of the model � . On this wise, the purpose of supervised learning is to
find optimal 𝜃⋆ values in order to minimize the distance between the outputs of the
model and the labeled values. Such distance is determined by the so-called loss
function L(�) (e.g., mean square error) during the training stage. The Stochastic Gra-
dient Descent (SGD) method is commonly used for this purpose. In each iteration k,
SGD updates � through gradient gk of L(�) as �k+1 = �k − � gk , where � is the so-
called learning rate, which controls the advance in the weight domain. gk is com-
puted as gk = 1

���
∑

n∈� ∇l(n��k), being l(n|�k) the loss of the example n, computed
on �k .

The updating process demands high computational capacity. To accelerate it,
dedicated HPC clusters and non-dedicated cloud platforms are commonly used for
large-scale deep networks training on large datasets. The training process is usually
distributed on the platform resources based on two main schemes of parallelization,
known as model parallelism and data parallelism.

Model parallelism is used when the model is too large to fit in the memory of
an isolated computational resource, and hence, it is split and deployed among the
available resources. Every process trains its own portion of the model using the
same batch of examples. Depending on the deployment of the model, learners
communicate intermediate results using different strategies [13]. As training is an
inherently sequential process, this scheme could result in the underexploitation of

1 3

Training deep neural networks: a static load balancing approach

the computational resources, as its performance is limited by the communication
between the processes and by the number of nodes involved in the training process.

Conversely, data parallelism consists of running replicas of the training model
on the available computational resources. Every replica holds a local copy of the
entire model, which is trained on disjoint data subsets of � called batches [18]. After
every batch in the training step is completed, replicas compute the gradients of their
respective loss function. Next, they coordinate to combine their local computed gra-
dients before updating � , commonly by tree reduction collective communications
[23], or pushing gradients to centralized parameter servers [7]. Needless to say,
these synchronization points cause straggler processes to have a high impact on the
overall performance. Furthermore, performance degradation grows with the hetero-
geneity of the platform and the number of replicas used to train the model. Model
and data types of parallelism can be combined in order to mitigate their limitations
in some particular scenarios. This is known as hybrid parallelism.

Two general mechanisms contribute to solve the aforementioned performance
issue. First, using an asynchronous SGD optimization procedure to relax the consist-
ency of parameter values by allowing processes to asynchronously combine gradi-
ents and update parameters. This scheme decouples communication and computa-
tion, which highly benefits the training performance. However, the order in which
parameters are updated is not deterministic, and hence gradient computations in a
replica are done on a stale version of parameter values. This distance between a
local parameter used to compute gradients in a replica and its global current value is
known as staleness. Empirical studies [7] show that a low degree of staleness does
not penalize the learning accuracy of the model. Meanwhile, other works [10] pro-
pose mechanisms for reducing staleness impact on the accuracy of training models.

A second approach to mitigate staleness consists of using load balancing tech-
niques to assign to each replica an amount of work which is in accordance with its
computational capacity. A dynamic load balancing mechanism is proposed in [3], in
which, in each epoch, every replica is assigned with a batch size proportional to its
speed. A key point is to determine the speed of each replica in the system, and this
is achieved by using an additional recurrent neural network that calculates the size
of the batch in the next epoch as a function of the current speed and processing time.
A non-dedicated cloud platform is assumed in this context, with shared assigned
computing resources and, hence, variable speed and memory parameters. Although
adaptive (and partially able to deal with stragglers due to temporal speed variations),
this mechanism requires a large number of epochs to be effective and steals compu-
tational resources from the main training process.

In this paper, we introduce a new mechanism for improving the distributed per-
formance of the training process of deep models, while keeping their accuracy. Our
methodology follows a two-step approach. First, prior to the training, we use the
FuPerMod tool [6] to determine the computational capabilities of the computational
resources assigned to each replica in the platform. We assume dedicated hetero-
geneous clusters made up of both CPUs and GPUs. Secondly, in the training step,
we assign a batch size to each replica that is proportional to its relative speed. The
goal is to balance the workload and, as a consequence, to minimize the communica-
tion of the waiting times of the replicas at the time of communicating the computed

 S. Moreno-Álvarez et al.

1 3

gradients. We use the synchronous SGD with reduction tree communication to com-
bine gradients, which ensures deterministic order in combining the per-replica com-
puted gradients, and hence it does not affect the overall accuracy.

The static load balancing technique has been widely used in the HPC field [1,
21], because it does not require any additional computational resources during
the execution time of an application. Notwithstanding this fact, especially in non-
dedicated platforms where the workload variation is higher, it can be combined
with other mechanisms, such as those proposed in [3] to perform fine-grained and
dynamic adaptations during the training stage. Furthermore, this can be combined
with asynchronous SGD techniques, such in [4], to ensure minimal staleness. Hence,
the primary contributions of this work are:

• A new methodology to improve the performance of data-parallel distributed
training of deep models, while preserving the accuracy of the trained model
when replicas run on dedicated heterogeneous platforms.

• The application of common HPC-based static workload balancing techniques for
training deep models, in order to optimize resource exploitation and execution
times.

• An evaluation of the impact of the heterogeneity of dedicated computing plat-
forms on the deep network distributed training process.

The rest of this paper is organized as follows. First, we discuss related works in
Sect. 2. Section 3 describes our implementation, including the distribution of pro-
cesses on the heterogeneous platform and the training model procedure. Section 4
details how we evaluated our system and presents the obtained results. Finally,
Sect. 5 presents our conclusions and future work.

2 Related work

The increase in dataset sizes and the number of parameters to learn in deep models
have leveraged the usage of HPC platforms to accelerate training, including dedi-
cated clusters and non-dedicated cloud environments. The work in [2] provides an
excellent survey of current distributed techniques to parallelize and distribute the
training. The main data and model parallelization schemes are described in work
[16] that proposes a distribution training of convolutional networks [19] using data
parallelism in convolutional layers and model parallelism in fully connected layers,
as well as different synchronization methods for parameter updating between work-
ers. In this paper, we focus on the data parallelism scheme applied to convolutional
networks.

Paper [7] proposes the Downpour asynchronous SGD algorithm implemented in
the DistBelief framework. This framework enables large-scale model and data paral-
lelism for training purposes. The Downpour algorithm launches multiple replicas
of the model using data parallelism, and it uses asynchronous SGD gradient com-
munication based on a centralized parameter server. Authors empirically found that
reaching a certain level of staleness tolerance does not significantly impact the model

1 3

Training deep neural networks: a static load balancing approach

accuracy. Nevertheless, work [10] proposes a mechanism for reducing the staleness
of the asynchronous SGD by modulating the learning rate using the current average
gradient staleness values. They provide a discussion on the interplay of hyperpa-
rameters and distribution design choices, using the implemented Rudra framework.
The staleness problem is also addressed in [4], using a different approach. This
work performs data-parallel training of models by using p backup workers in addi-
tion to P replicas and data-parallel synchronous optimization. In order to update the
model parameters, it considers P faster gradient computations and drops the rest.
This approach reduces staleness and performance degradation caused by straggler
replicas, at the expense of using additional resources. In this paper, we follow a syn-
chronous SGD approximation method that avoids the staleness problem, although it
is more sensitive to waiting times at synchronization.

Focusing on heterogeneous platforms, work [15] studies the performance degra-
dation of SGD optimization in heterogeneous platforms (with respect to homoge-
neous distributed training schemes). They focused on a Stale Synchronous Parallel
synchronization scheme, in which the grade of staleness is limited by the updating
protocol and the parameter server. The authors propose both constant and dynamic
learning rate schedules for updating the parameters. In this way, the unstable conver-
gence caused by stragglers is mitigated, improving statistical and hardware perfor-
mance. A key difference with respect to our work is that we use collective communi-
cation as synchronization mechanism, avoiding the necessity of additional parameter
server processes.

The thorough work in [3] proposes to adapt batch sizes in each replica to their
relative speeds. As a consequence, straggler replicas waiting times are minimized.
Authors use a Bulk Synchronous Parallel scheme (which avoids staleness) on heter-
ogeneous non-dedicated cloud platforms, with simulated injected stragglers in their
experiments. The measurement of the respective speed of the replicas (needed to
compute their assigned batch sizes) is achieved using a Recurrent Neural Network,
trained along epochs with per-replica CPU performance and memory usage values
in each iteration. It is worth noting that our work follows a similar approach to those
adapting batch sizes in replicas to their computational performance. However, a nov-
elty of our work is to introduce an offline and static load balance mechanism which
does not interfere with the training of the model. Work [3] offers additional insights
that we plan to include in future works, such as conducting weighted gradient aggre-
gation to avoid per-sample biases in replicas.

3 Detailing the adopted approach

This section details our proposal for training of deep models1 following a data-
parallel scheme. We assume a dedicated heterogeneous platform made up of a set
of computational nodes, with different speeds. Nevertheless, our approach can also
be applied to non-dedicated cloud environments as an initial workload distribution,

1 The source code is available at https ://githu b.com/mhaut /stati c_load_deepl earni ng.

https://github.com/mhaut/static_load_deeplearning

 S. Moreno-Álvarez et al.

1 3

or assuming the possible variations in performance. Replicas running the training
process are deployed on the computing nodes of the platform, commonly multicore
CPUs and GPUs with different numbers of cores and processing speeds on current
heterogeneous platforms.

A key issue is to accurately determine the speed of each node. In this regard,
FuPerMod is a tool that is commonly used in heterogeneous HPC platforms. It deter-
mines empirically the computational capabilities of a node running a given applica-
tion. To achieve that, the tool executes a benchmark (provided by the user) in each
compute node. This benchmark should be representative of the application in order
to obtain meaningful execution profiles. In this work, we use a convolutional neural
network (on a range of batch sizes) as the benchmark to measure the speed in each
replica. As output, FuPerMod returns the speed of the P computational nodes in the
heterogeneous platform, as a set of P functions S = {s1(x), s2(x),… , sP(x)} . A func-
tion sp(x) varies along a given range of batch sizes x to represent the performance
profile of a computational node, which depends on its available resources (including
cache and memory sizes). FuPerMod speed is provided as the inverse of the time
invested in executing the benchmark for a given batch size |B|.

It is important to note that the set of speed functions S characterizing the platform
is statically determined in a previous initialization step. Observe Fig. 1. The speed
functions, together with the specific batch size |B|, are used as inputs to the FuPer-
Mod partitioner utility, which computes the number of examples |Bp| assigned to
each replica p, with

∑P

p=1
�Bp� = �B� . As FuPerMod partitioner works with sizes in

Fig. 1 General distributed learning framework of a model using static load balance mechanisms. The
figure represents an iteration k of an epoch in the training process, where P = 3 replicas are assigned
with an uneven batch size Bp . Replicas perform the parameter update after communicating gradients (gk)
using the MPI_Allreduce collective operation

1 3

Training deep neural networks: a static load balancing approach

bytes, we convert the input batch size to bytes using h × w × c × r × |B| , with r the
number of bytes to represent each pixel.

To train the model, SGD works as a synchronous iterative process over multiple
passes of the dataset, called epochs. In each epoch, the dataset � is split up in P
subsets and assigned to the P corresponding replicas. The size of the subset in a
replica p is computed as |�|∕|B| × |Bp| . Furthermore, the distribution of the dataset
to the replicas is made in such a way that batches assigned to replicas do not overlap
in each epoch and, additionally, every replica trains its own copy of the model on
the full set of examples along epochs. Then, replicas use their assigned subsets in
batches to train their copies of the model. A description of the process is shown in
Fig. 1. Iteration k of the SGD training process performs the following general steps:

1. Every replica p manages a batch of |Bp| examples, with �B� =
∑P

p=1
�Bp� . The size

of the batch Bp is proportional to the relative speed of the replica p, running on
computational resources with speed sp(|Bp|).

2. Replicas compute their gradients based on a Loss function l(n|�k
p
) that returns the

error of the sample n ∈ Bp , computed in the iteration k using parameters �k
p
 with

respect to the actual value. The gradient computation in a replica p is
gk
p
=

1

�Bp�
∑

n∈Bp
∇l(n��k

p
).

3. After computing the gradient vectors gk
p
 , each replica delivers a collective all-

reduce communication operation in order to combine gradients as: gk = 1

P

∑P

p=1
gk
p

4. Each replica updates the parameters using the received gradients and �.

We use PyTorch to train a model based on the previous steps. It implements MPI
blocking collectives [8], which impose synchronization, and hence, straggler pro-
cesses degrade performance. The proposed methodology is also compatible with the
use of a parameter server that holds an updated global copy of the parameters The
main drawback of this approach is its centralized nature that is mitigated by dis-
tributing parameters on several server processes [7] and the resources consumed by
such additional server processes.

Finally, balancing the workload according to the replicas that determined compu-
tational capacity ensures that all replicas finish iteration k at the same time, avoiding
idle times at the communication step and hence improving the overall performance.
Of course, an error in the workload balancing may always exist, depending on errors
in the measurement of the speed of the replicas using benchmarking, and on the
granularity of the example size, which we consider negligible. A limitation of this
methodology is that a static workload assignment to replicas does not adapt to tem-
poral changes in the system loads derived from the shared usage of resources in non-
dedicated platforms. We indeed assume a homogeneous network, and hence, we do
not account for the influence of possible imbalances in the gradients communication
performance in the model training.

At this point, it is important to note that [3] presents a weighted aggregation in
the gradient computation for assigning every example with the same worth, as
gk =

1

�B�
∑P

p=1
gk
p
 . This improvement does not affect the performance, although it

certainly has an impact in the convergence of the model.

 S. Moreno-Álvarez et al.

1 3

4 Experimentation and analysis

This section evaluates the proposed approach. We detail first the hardware and
software elements, and then we discuss the results of the training tasks in terms
of performance and accuracy. To conclude, we experimentally test the proposed
load balanced implementation in ResNet [11], a relevant and standard architec-
ture in the field.

A small test platform called Metropolis is used to obtain initial insights and
results of the behavior of the implementation and also a dedicated heterogene-
ous HPC cluster called Ceta-Ciemat to obtain real and more complete results of
our implementation in a real environment. Metropolis is composed of two nodes,
Pluton and Caronte, that use three different GPUs: an NVIDIA RTX 2080Ti and
an NVIDIA RTX 2060 (connected to Pluton) and an NVIDIA RTX 1050Ti (con-
nected to Caronte), with 11 GB, 6 GB and 4 GB of memory, respectively. The
CPUs are an Intel Xeon E5620 (Nehalem) 8-core processors running at 2.40 GHz
with 12 GB of RAM. Nodes are connected by an Ethernet GigaBit network. Five
replicas are deployed in that set of computational nodes. A CPU core is reserved
for each replica running on a GPU, in order to be used for memory transfers
and communications. On the other hand, the Ceta-Ciemat cluster is composed
of eight multicore CPU nodes connected by an InfiniBand QDR Network. Each
CPU node holds one or two Kepler K80 GPUs with 24 GB of RAM. The CPUs
are a 24-core Intel Haswell running at 2.50 GHz with 64 GB of RAM. Although
all GPUs are similar, we experimentally found significant differences in speed
between nodes using one GPU with respect to nodes using two GPUs. The reason
is that GPUs share the PCI bus, which impacts the performance of data trans-
fers between CPUs and GPUs. Such subtle performance penalties can be found in
other platforms.

We trained our models using two standard datasets, MNIST and CIFAR-10.
MNIST is composed of black and white handwritten digits images, represent-
ing digits from 0 to 9, with a training set of 60.000 examples and a test set of
10.000 examples. These digits have been normalized in size and centered to a
fixed image size of 28 × 28 × 1 of 32-bit floats. CIFAR-10 contains 60.000 color
images of size 32 × 32 × 3 of 10 non-biased classes. This dataset is used to verify
that the proposed implementation provides successful results.

Two models are used in our experiments. Both have a feature extractor com-
posed of several stages of convolutional and pooling layers and a classifier with
fully connected (FC) layers. Details are shown in Tables 1 and 2. The two-dimen-
sional convolutional layers have been implemented to extract deep features,
employing the rectified linear unit (ReLU) activation function. The feature maps
obtained in the convolutional part are reshaped into an unrolled vector represen-
tation to feed the classifier.

As a conduit example, we evaluate the performance of training the model
described in Table 1 with the MNIST dataset in the Metropolis platform. Per-
formance is measured using wall clock time per epoch. The final results are
obtained by taking the maximum training time per epoch of the replicas involved

1 3

Training deep neural networks: a static load balancing approach

in the training process, along five different executions. To obtain our performance
data, we run e = 10 epochs. As a baseline test, we use a homogeneous (unbal-
anced) distribution of the batch size |B| between replicas in the platform, with
|Bp| = |B|∕P,∀p . Figure 2 shows the performance data in separate computation
and communication plots, for a range of batch sizes |B|. The communication time
is measured from the invocation of the blocking communication operation to the
reception of the gradients, and it includes waiting times. As expected, replicas

Table 1 Layers of the
convolutional neural network
implemented for classification
of the MNIST image dataset

Padding is added to convolutional layers for not shrinking the image

Model for MINST (Number of parameters: 21,840)

Layer ID Kernel/neurons Activation funct. Pooling Dropout

Conv1 5 × 5 × 10 ReLU 2 × 2 No
Conv2 5 × 5 × 20 ReLU 2 × 2 No
FC1 50 ReLU – Yes
FC2 n

classes
Softmax – No

Table 2 Layers of the
convolutional neural network for
the classification of the CIFAR-
10 image dataset

Padding is added to convolutional layers to avoid shrinking the
images

Model for CIFAR-10 (Number of parameters: 176,034)

Layer ID Kernel/neurons Activation funct. Pooling Dropout

Conv1 7 × 7 × 10 ReLU 2 × 2 No
Conv2 7 × 7 × 20 ReLU 2 × 2 No
FC1 120 ReLU – No
FC2 84 ReLU – No
FC3 n

classes
Softmax – No

Fig. 2 Computation (left) and communication (right) times of training the model described in Table 1 on
the MNIST dataset in Metropolis platform for a range of batch sizes, evenly distributed between P = 5
replicas. The processing time is provided in seconds per epoch

 S. Moreno-Álvarez et al.

1 3

running on CPUs spend more time in computing their batches of examples than
those on GPUs, because of their lower computing throughput. As a consequence,
GPU replicas wait at communication points, degrading overall performance of
the training process.

Figure 3 illustrates the speeds of the replicas running on the Metropolis com-
putational nodes, obtained by benchmarking using FuPerMod. As expected, high
differences between GPUs and CPUs are observed, with slight differences between
processes running in similar resources (either CPUs or GPUs). Figure 4 shows the
results of the training execution for a range of batch sizes |B|, under the proposed
static balanced distribution. FuPerMod partitioner unevenly distributed every batch
B between replicas according to their speeds. Due to the fact that every replica needs
to complete a similar amount of computing work, communication waiting times
are dramatically reduced with respect to Fig. 2. This reduction also arises from the
reduction in the differences of the time lines in the plots. As a consequence, the
overall performance is significantly improved, as shown in Fig. 5.

We now focus on the Ceta-Ciemat system to validate performance results
obtained in the previous proof-of-concept Metropolis platform. Figure 6 (top)

Fig. 3 FuPerMod characteriza-
tion of the computational capa-
bilities of P = 5 replicas running
on the Metropolis nodes. Speeds
are shown for a range of batch
sizes |B|

Fig. 4 Computation (left) and communication (right) times of training the model described in Table 1 on
the MNIST dataset in Metropolis platform for a range of batch sizes. Batch sizes are unevenly distributed
between P = 5 replicas, according to their speeds determined by FuPerMod tool. Time is provided in
seconds per epoch

1 3

Training deep neural networks: a static load balancing approach

shows the performance results obtained after training the model detailed in
Table 2 with the CIFAR-10 dataset. We use a homogeneous distribution of the
batch size, hence with |Bp| = |B|∕P,∀p , between P = 16 replicas deployed on
available computational nodes of the platform. As in the previous platform, we
have two groups of replicas depending on whether they run on CPUs or GPUs.
Differences in performance between groups are high; however, slight differences

Fig. 5 Performance of training
the model described in Table 1
on the MNIST dataset for unbal-
anced and balanced distribu-
tions between P = 5 replicas in
Metropolis

Fig. 6 Performance times in seconds per epoch of the computation (left) and communication (right) of
training the model in Table 2, using CIFAR-10 dataset in the Ceta-Ciemat cluster, for increasing batch
sizes. Top figures represent evenly (unbalanced) distribution and bottom figures represent unevenly (bal-
anced) distribution between P = 16 replicas

 S. Moreno-Álvarez et al.

1 3

in performance between replicas running on similar resources also impact the
performance of the entire training process. Note that differences in computation
(and hence, inversely, in communication, due to waiting times) grow with the
batch sizes. The corresponding results obtained with a balanced distribution of
the batch |B| between replicas, according to their speeds, are shown at the bottom
of Fig. 6. Again, plot lines differences shrink, meaning that replicas invest similar
times in performing their assigned computing workloads, hence reducing wait-
ing times at communication points. Figure 7 displays the total performance times
for the two models in Tables 1 and 2, trained, respectively, on CIFAR-10 and
MNIST on the Ceta-Ciemat platform with P = 16 replicas. Differences between
unbalanced and balanced distributions remain constant along batch sizes for both
MNIST and CIFAR-10 datasets. As a summary, the average speedups along the
range of batch sizes for statically balanced workload distributions—with respect
to unbalanced ones—are 1.52% and 2.78% , respectively.

Additionally, we evaluate the accuracy, defined as the percentage of correct clas-
sification of examples, given non-biased datasets as MNIST and CIFAR-10. In order
to show the behavior of the models in both unbalanced (even) and balanced (une-
ven) workload distributions, the batch size is set to |B| = 2048 examples. Figure 8
shows both per-epoch and temporal evolution of the accuracy of the model trained
on MNIST. We include the temporal evolution of accuracy to illustrate differences
in convergence times of the methods with respect to training time. We can observe
that both distribution approaches require around e = 50 epochs to converge to a
similar accuracy. Figure 9 shows the corresponding results for CIFAR-10, with the
difference that the model needs e = 300 epochs to converge on this (larger) dataset.
We actually executed a higher number of epochs than those shown in both models
plots; however, we experimentally observe that those values of e were enough for
the models to converge. Table 3 summarizes the accuracy of the models including
their standard deviation along five executions. The table shows the accuracy reached
for MNIST and CIFAR-10 datasets in the Ceta-Ciemat platform for e = 50 and
e = 300 epochs, respectively. Accuracy figures fall in the same range if we consider

Fig. 7 Performance times in seconds per epoch for models trained with CIFAR-10 (left) and MNIST
(right) datasets on the Ceta-Ciemat platform (P = 16 replicas) for unbalanced and balanced distributions
of batch sizes between P = 16 replicas

1 3

Training deep neural networks: a static load balancing approach

the standard deviation; hence, there are no significant differences. Nevertheless, the
aggregation of weighted gradients in the trained process (proposed in work [3] and
described in Sect. 3) should make accuracy values even closer, without affecting

Fig. 8 Accuracy of the model described in Table 1, trained on MNIST dataset for unbalanced and bal-
anced distributions of batch sizes |B| in the Ceta-Ciemat platform. Both per-epoch and temporal evolu-
tion of the accuracy are shown. The shaded areas represent the standard deviation along a set of five
repetitions

Fig. 9 Accuracy of the model described in Table 2 trained on CIFAR-10 dataset for unbalanced and bal-
anced distribution of batch sizes |B| in the Ceta-Ciemat platform. Both per-epoch and temporal evolution
of the accuracy are shown. The shaded areas represent the standard deviation along a set of five repeti-
tions

Table 3 Maximum accuracy and Last accuracy (obtained in the last epoch) of models described in
Table 1 and Table 2, trained on MNIST and CIFAR-10 datasets, respectively

The best metric values are in bold

Dataset Maximum accuracy Last accuracy #Epochs

Unbalanced Balanced Unbalanced Balanced

MNIST ��.�� ± 1.47 96.92 ± 0.69 ��.�� ± 1.26 96.58 ± 0.75 e = 50

CIFAR-10 67.54 ± 4.64 ��.�� ± 1.11 66.22 ± 2.45 ��.�� ± 1.10 e = 300

 S. Moreno-Álvarez et al.

1 3

performance. Finally, as the previous results show that the accuracy remains con-
stant with load balancing, performance tests have been carried out on the main
ResNet architectures under CIFAR-10. Table 4 shows that the speedup obtained
remains constant when the number of parameters is not triggered, while with a
higher number of parameters it achieves a higher speedup.

5 Conclusions and future work

This paper describes a new approach to distribute the training of deep networks on
dedicated heterogeneous platforms. The proposed methodology departs from a pre-
computed characterization of the speed of the computational resources of the plat-
form. It provides replicas of the model (running in such computational resources)
with a batch size that is proportional to their computing capabilities, in such a way
that waiting times at communication points (performed at each training iteration to
combine gradients between processes) are eliminated. As a consequence, the overall
execution time needed for training the deep model is reduced (while the accuracy is
not significantly affected), as demonstrated for two different platforms and datasets.

One of the main contributions of this work is the exploitation of well-known HPC
optimization techniques to balance the distributed training of deep learning models.
Previous works propose dynamic load balancing techniques that impact the perfor-
mance, albeit requiring a high number of iterations to be really effective. In turn, our
methodology can dynamically adapt batch sizes to performance variations during
the training process, as a result from the non-dedicated usage of resources (which is
characteristic of cloud environments).

Our future work will focus on the study of the scalability of the proposed imple-
mentation regarding the number of replicas, using both larger datasets and deeper
networks.

Acknowledgements This work was jointly supported by the following projects and institutions: (1) The
European Regional Development Fund ‘A way to achieve Europe’ (ERDF) and the Extremadura Local Gov-
ernment (Ref. IB16118). (2) The Ministry of Education, November 19, 2015, of the Secretary of State for
Education, Vocational Training and Universities, under grant FPU15/02090. (3) The computing facilities

Table 4 Training times for
several ResNet architectures

The best metric values are in bold
Parameters column shows the number of trainable parameters (in
millions). Times for unbalance and balance workload distributions
are in seconds per epoch. Last column shows obtained speedups

Network Parameters (M) Unbalanced Balanced Speedup

ResNet20 0.27 65.31 25.67 2.54
ResNet32 0.46 103.84 41.76 2.49
ResNet44 0.66 145.10 58.25 2.49
ResNet56 0.85 185.64 74.24 2.50
ResNet110 1.72 853.50 104.07 8.20

1 3

Training deep neural networks: a static load balancing approach

of Extremadura Research Center for Advanced Technologies (CETA-CIEMAT), funded by the European
Regional Development Fund (ERDF).

References

 1. Beaumont O, Boudet V, Rastello F, Robert Y (2001) Matrix multiplication on heterogeneous platforms.
IEEE Trans Parallel Distrib Syst 12(10):1033–1051. https ://doi.org/10.1109/71.96341 6

 2. Ben-Nun T, Hoefler T (2018) Demystifying parallel and distributed deep learning: an in-depth concur-
rency analysis. arXiv :1802.09941

 3. Chen C, Weng Q, Wang W, Li B, Li B (2018) Fast distributed deep learning via worker-adaptive batch siz-
ing. In: Proceedings of the ACM Symposium on Cloud Computing, SoCC ’18. ACM, New York, USA,
pp 521–521

 4. Chen J, Monga R, Bengio S, Jozefowicz R (2016) Revisiting distributed synchronous SGD. In: ICLR
Workshop Track

 5. Chiu C, Sainath TN, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss RJ, Rao K, Gonina K,
Jaitly N, Li B, Chorowski J, Bacchiani M (2017) State-of-the-art speech recognition with sequence-to-
sequence models. arXiv :1712.01769

 6. Clarke D, Zhong Z, Rychkov V, Lastovetsky A (2013) Fupermod: a framework for optimal data partition-
ing for parallel scientific applications on dedicated heterogeneous HPC platforms. In: Parallel Comput-
ing Technologies. Springer, Berlin, Heidelberg, pp 182–196

 7. Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, Mao MZ, Ranzato M, Senior A, Tucker P,
Yang K, Ng AY (2012) Large scale distributed deep networks. In: NIPS, USA, pp 1223–1231

 8. Forum MPI (2015) MPI: a message-passing interface standard, version 3.1 , June 4, 2015. High-Perfor-
mance Computing Center Stuttgart, University of Stuttgart

 9. Fox G, Qiu J, Jha S, Ekanayake S, Kamburugamuve S (2016) Big data, simulations and HPC convergence.
In: Big Data Benchmarking. Springer, Cham, pp 3–17

 10. Gupta S, Zhang W, Wang F (2017) Model accuracy and runtime tradeoff in distributed deep learning: a
systematic study. In: IJCAI, pp 4854–4858

 11. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv :1512.03385
 12. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw

4(2):251–257
 13. Huang Y, Cheng Y, Chen D, Lee H, Ngiam J, Le QV, Chen Z (2018) Gpipe: efficient training of giant

neural networks using pipeline parallelism. arXiv :1811.06965
 14. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. Computer 29(3):31–44
 15. Jiang J, Cui B, Zhang C, Yu L (2017) Heterogeneity-aware distributed parameter servers. In: Proceed-

ings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17. ACM, NY,
USA, pp 463–478

 16. Krizhevsky A (2014) One weird trick for parallelizing convolutional neural networks. arXiv :1404.5997
 17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neu-

ral networks. In: Advances in Neural Information Processing Systems 25. Curran Associates, Inc., pp
1097–1105

 18. Le QV, Ngiam J, Coates A, Lahiri A, Prochnow B, Ng AY (2011) On optimization methods for deep
learning. In: Proceedings of the 28th International Conference on International Conference on Machine
Learning, ICML’11. Omnipress, USA, pp 265–272

 19. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436
 20. Paoletti M, Haut J, Plaza J, Plaza A (2019) Deep learning classifiers for hyperspectral imaging: a

review. ISPRS J Photogramm Remote Sens 158:279–317
 21. Rico-Gallego JA, Díaz-Martín JC, Calvo-Jurado C, Moreno-Álvarez S, García-Zapata JL (2019) Ana-

lytical communication performance models as a metric in the partitioning of data-parallel kernels on
heterogeneous platforms. J Supercomput 75(3):1654–1669

 22. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
 23. Sergeev A, Balso MD (2018) Horovod: fast and easy distributed deep learning in TensorFlow. arXiv

:1802.05799

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/71.963416
http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1712.01769
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799

 S. Moreno-Álvarez et al.

1 3

Affiliations

Sergio Moreno‑Álvarez1 · Juan M. Haut2 · Mercedes E. Paoletti2 ·
Juan A. Rico‑Gallego1 · Juan C. Díaz‑Martín2 · Javier Plaza2

 Juan M. Haut
 juanmariohaut@unex.es

 Mercedes E. Paoletti
 mpaoletti@unex.es

 Juan A. Rico-Gallego
 jarico@unex.es

 Juan C. Díaz-Martín
 juancarl@unex.es

 Javier Plaza
 jplaza@unex.es

1 Department of Computer Systems Engineering and Telematics, University of Extremadura,
Cáceres, Spain

2 Department of Technology of Computers and Communications, University of Extremadura,
Cáceres, Spain

http://orcid.org/0000-0002-1858-9920

	Training deep neural networks: a static load balancing approach
	Abstract
	1 Introduction
	2 Related work
	3 Detailing the adopted approach
	4 Experimentation and analysis
	5 Conclusions and future work
	Acknowledgements
	References

