
Vol:.(1234567890)

The Journal of Supercomputing (2020) 76:8866–8882
https://doi.org/10.1007/s11227-020-03187-0

1 3

Scalable recurrent neural network for hyperspectral image
classification

Mercedes E. Paoletti1 · Juan M. Haut1 · Javier Plaza1 · Antonio Plaza1

Published online: 4 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Hyperspectral imaging (HSI) collects hundreds of images over large spatial obser-
vation areas on the Earth’s surface, recording scenes at different wavelength chan-
nels and providing a vast amount of information. Recurrent neural networks (RNNs)
have been widely used for the classification of HSI datasets, understood as a single
sequence of pixel vectors with high dimensionality. However, the RNN model scales
poorly when dealing with HSI scenes with large dimensionality. In order to miti-
gate this problem, this paper presents a new RNN classifier based on simple recur-
rent units that performs HSI classification in a highly scalable and efficient way. Our
experimental results (conducted on four real HSI datasets) reveal very good perfor-
mance, not only in terms of classification accuracy (in line with existing methods),
but also in terms of computational performance when dealing with large datasets.

Keywords Hyperspectral image · Recurrent neural networks · CUDA

1 Introduction

The significant advances in computing technology achieved in the last decade, cou-
pled with the newest developments in imaging spectroscopy [18], have allowed
the development of new Earth observation (EO) missions with powerful airborne
and satellite hyperspectral imaging (HSI) sensors, which can capture high-quality

Source codes: https ://githu b.com/mhaut /scala ble_RNN_HSI.

 * Juan M. Haut
 juanmariohaut@unex.es

 Mercedes E. Paoletti
 mpaoletti@aunex.es

 Javier Plaza
 jplaza@unex.es; aplaza@unex.es

1 Department of Technology of Computers and Communications, University of Extremadura,
Escuela Politecnica, Avda. de la Universidad s/n, Cáceres, Spain

http://orcid.org/0000-0001-6701-961X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03187-0&domain=pdf
https://github.com/mhaut/scalable_RNN_HSI

8867

1 3

Scalable recurrent neural network for hyperspectral image…

images composed by hundreds of measurements (at different wavelength channels)
over extensive spatial areas, acquiring information in hundreds of continuous and
narrow bands, ranging from the visible to the near-infrared (NIR) and shortwave-
infrared (SWIR) [8] parts of the electromagnetic spectrum.

As a result, current spectrometers are able to produce very large HSI data cubes,
where each pixel contains the spectral signature of the observed materials. These
spectral signatures collect the physical–chemical behavior of materials in the pres-
ence of solar light, being unique for each kind of terrestrial object, and allowing to
describe and identify each element of the scene, not only at an object level, but also
at pixel (and even sub-pixel) level of detail [19], providing abundant information for
the characterization of the surface of the Earth. Such information can be used in a
wide range of human activities, such as hydrology [12], forestry [20], geology [22]
and mineralogy [5]), as well as precision agriculture [7], urban planning [27], and
prevention and management of disasters.

In this context, the analysis and processing of HSI datasets plays an important
role in remote sensing [14], demanding the development of effective and efficient
techniques for the analysis of these data. In particular, this paper focuses on meth-
ods that identify the content of an HSI scene by associating each pixel in the scene
with a corresponding land-cover class. These methods can be described as the map-
ping function f (⋅, �) , where f ∶ � → � is able to relate each pixel of the HSI scene
�i ∈ � with a land-cover category �i by adjusting its parameters � , obtaining at the
end a classification map � with pairs of the form: {�i, �i}

npixels

i=1
.

Besides, it must be noted that HSI data present several challenges related to its
volume and complexity. While a detailed spectral signature allows for the unique
identification of each material in the scene, its large spectral dimension and content
can further complicate the classification process, imposing significant storage and
processing restrictions. As a result, classification methods must be efficient and scal-
able in the use of computational and storage elements [25]. Moreover, the use of a
large number of spectral features increases the complexity of classification methods,
hampering their performance and leading to lower classification accuracies with
more features (peaking paradox). In the field of HSI, this issue corresponds with
the curse of dimensionality phenomenon that, coupled with high intraclass variabil-
ity and interclass similarity, makes the classification problem an extremely ill-posed
one.

Among available classification methods, deep neural networks (DNNs) [3] have
attracted the attention of the HSI research community due to several characteris-
tics that facilitate the classification of these kinds of data, including the following
aspects:

– They do not need prior information about statistical properties of the HSI data
to extract and process the spectral, spatial and spectral–spatial information con-
tained in the scenes.

– Their working mode is based on the optimization of a loss function, for instance
the mean square error (MSE) between the networks’ outputs and the desired
outputs, through the adjustment of the networks’ parameters � . To achieve this,
they employ a forward-backward iterative mechanism (based on gradient descent

8868 M. E. Paoletti et al.

1 3

optimizers) to find the optimal � , being able to work as universal approximators
[6].

– They offer great flexibility in terms of learning models, i.e., unsupervised, super-
vised and semi-supervised.

– As stacks of layers composed by neurons, they provide a great variety of archi-
tectures, from shallow to deep and very deep ones, employing fully (or locally)
connected neurons, and implementing one or more paths.

Moreover, advances in computing technology have allowed the implementation of
deepest and more complex neural models, which have led to a revolution in deep
learning (DL) techniques [15]. Focusing on HSI classification, these DNNs are able
to extract representative features, learning simple representations at the first layers
and extending them to more complex abstractions at the final layers (hierarchical
learning), discovering nonlinear relationships in the input HSI data and yielding
high performance in HSI classification [24, 32].

In particular, the recurrent neural network (RNN) [29] is an interesting classifier
that presents an internal structure similar to a directed graph, implementing loops
in the connections of the layers that force each node activation of the current step to
depend on the activations of the preceding ones. In this sense, the RNN is a power-
ful model for learning sequences of data, storing an internal state that provides a
memory to relate the current input data sample with the previous ones. At the end,
these states allow to process the contextual information of the data, extracting tem-
poral features. The RNN has been previously employed to perform HSI data clas-
sification, considering each spectral pixel as the input sequential data of the model,
as Mou et al. propose in [21]. Other approaches even combine spectral information
with spatial information. For instance, Zhou et al. [34] concatenate the spatial infor-
mation of a neighborhood window (extracted with PCA [30]) to the spectral infor-
mation of the pixel. Zhang et al. [33] consider several principal components (for
which they extract Gabor textures and differential morphological profiles) which are
combined and stacked to conform local spatial sequential (LSS) features that will be
sent as input to the RNN model.

Nonetheless, all the aforementioned spectral and spectral–spatial methodologies
must face an important restriction. In particular, RNNs have been shown to suffer
from overfitting when the length of their input sequences is very large, which hap-
pens often when dealing with HSIs, since spectral bands are handled as sequences of
length n3 in which each sequence feature is a band, so overfitting becomes more evi-
dent as n3 increases. To mitigate this problem, it is usual to include more informa-
tion to the model, e.g., grouping the spectral bands to enlarge the size of the features
and shorten the length of the sequence. However, this practice hampers the scal-
ability and performance of the network. Also, as the sequence and/or feature length
increases, the runtimes needed by the model become longer.

In order to improve the performance of RNN models (in terms of both runtimes
and scalability), some interesting parallel versions and toolkits have been developed
[1, 17, 23]. For instance, [28] presents a general RNN with a parallel implementa-
tion for graphics processing units (GPUs) based on NVIDIA CUDA. Other works
focus on the skip of the hidden states [2] in order to speed up the data processing.

8869

1 3

Scalable recurrent neural network for hyperspectral image…

However, to the best of our knowledge, very few efforts have been focused on accel-
erating the processing of HSIs with RNNs. However, accelerating RNNs for HSI
data processing can give an adequate solution to the problems of scalability, runtime
and overfitting when dealing with the high spectral dimensionality of these kinds of
data.

This paper investigates (for the first time in the available literature) the scalable
implementation of a novel variant of the RNN model, called simple recurrent unit
(SRU) [16], for HSI data classification. Comparing the SRU with traditional recur-
rent units, its architecture allows faster learning in terms of training speed, reduc-
ing the number of trainable parameters while maintaining a reliable performance (in
terms of accuracy). Thus, the main goal of this paper is to reduce the internal com-
plexity of the RNN model (i.e., the relationships between the current outputs and the
previous ones), thus facilitating the parallelization of the computations performed
by the recurrent units in order to enhance the performance of traditional RNN mod-
els for HSI data classification.

2 Recurrent neural units: overview

An HSI data scene � ∈ ℝ
n1×n2×n3 can be represented as a matrix of n1 × n2 pixels,

where each pixel �i is composed by n3 spectral bands. On this wise, the classification
pursues to associate each pixel with a corresponding land-cover class (label), obtain-
ing a classification map � ∈ ℝ

n1×n2×nclasses ≡ {�i, �i}
n1⋅n2
i=1

.
RNN models for HSI data interpretation process the spectral signature contained

in each �i as a time sequence, where the spectral bands are considered as time steps
(see Fig. 1). This allows the pixels to be processed in band-by-band fashion [21].
Alternatively, the bands can be arranged into groups [31]. Moreover, the RNN
model provides three different units: (i) vanilla recurrent unit, (ii) long short-term
memory (LSTM) [11], and (iii) gated recurrent unit (GRU) [4]. The vanilla unit is
the oldest and simplest model, as defined by Eq. (1):

Fig. 1 Traditional band-by-band RNN model for HSI data classification. The spectral signature contained
in each pixel is processed as a temporal sequence, where different spectral bands correspond to different
time steps

8870 M. E. Paoletti et al.

1 3

Considering �t ∈ ℝ
n as the input sequential sample, the vanilla model computes the

output �t as a hidden state at time t, i.e., �t = �t , by combining the current input
with the unit’s data weights �h and bias bh and the previous state �t−1 , weighted
by the connection weights �h , being H(⋅) a nonlinear activation function such as
sigmoid or hyperbolic tangent (tanh). As a result, the obtained hidden state works as
the memory of the model, and it is applied to the subsequent sample �t+1.

Due to its simplicity, the vanilla RNN tends to quickly degrade the interpreta-
tion of high-dimensional data, reaching poor classification results. The LSTM deals
with the data degradation by reinterpreting the original RNN as a cell composed by
two main states, the hidden �t and cell �t states, which are controlled by three gates
known as input �t , output �t and forget �t gates, in order to manage the information
flow that goes through the unit. This mechanism allows the LSTM to learn useful
information along time, disregarding the irrelevant one.

As we can observe in Eq. (2), �t works as the traditional output of the unit, while
�t includes (or removes) information into (from) the cell, depending on the gates’
values. Thus, the input gate �t determines whether a new input sample is allowed to
reach inside the cell or not; the forget gate �t deletes the irrelevant information; and
the output gate �t weights the unit’s output signal at time t.

However, this control-gate mechanism introduces significant complexity to
LSTM. With this in mind, the GRU model tries to make a compromise between the
simplicity of the vanilla unit and the high performance of the LSTM. In fact, the
GRU can be considered as a simplified LSTM, with the output gate removed (this
involves fewer parameters) and the input and forget gates evolved into update (�t)
and reset (�t) gates, as Eq. (3) shows:

(1)�t =

{

0 if t = 0

H
(

�h ⋅ �t + �h ⋅ �t−1 + bh
)

if t ≠ 0

(2)

�t = H
(

�i ⋅ �t + �i ⋅ �t−1 + bi
)

�t = H
(

�f ⋅ �t + �f ⋅ �t−1 + bf
)

�t = H
(

�o ⋅ �t + �o ⋅ �t−1 + bo
)

�t =

{

0 if t = 0

�t◦�t−1 + �t◦H
(

�c ⋅ �t + �c ⋅ �t−1 + bc
)

if t ≠ 0

�t =

{

0 if t = 0

�t◦H
(

�t
)

if t ≠ 0

(3)

�t = H
(

�z ⋅ �t + �z ⋅ �t−1 + bz
)

�t = H
(

�r ⋅ �t + �r ⋅ �t−1 + br
)

��
t
= tanh

(

�h ⋅ �t + �t◦�h ⋅ �t−1 + bh
)

�t =

{

0 if t = 0

�t◦�t−1 + (1 − �t)◦�
�
t

if t ≠ 0

8871

1 3

Scalable recurrent neural network for hyperspectral image…

Although these models are able to reach acceptable performance in HSI data classi-
fication, they present an important computational restriction due to the high depend-
ence on previous steps. In fact, although algebraic operations can be optimized and
parallelized in hardware, such dependencies hamper the speedup as the amount of
data (and the dimensionality of the feature space) grow, making the RNN model
scale poorly in this context. In addition, the RNN suffers from overfitting and van-
ishing gradient [10] problems. When processing HSI data, these models can see
their performance severely compromised when the spectral dimension of the images
is too high. In order to overcome these limitations, in the next section we introduce
a new RNN-based architecture that employs a SRU as the main block of the model.

3 Proposed method

3.1 SRU methodology

The SRU simplifies the internal architecture of the recurrent cell. With a design in-
between that of the LSTM and GRU models, it exhibits two main states: the hidden
state �t and the cell state �t , controlled by the forget �t and reset �t gates, as Eq. (4)
indicates:

Internally, Eq. (4) can be divided in two main components: (i) the light recurrence,
which reads the input �t at time t and computes the forget gate �t and the cell state �t
values (capturing the relevant sequential information), and (ii) the highway network,
which obtains the unit’s output by using the reset gate �t and the hidden state �t.

Focusing on the light recurrence concept, we observe that gates and cell states
are not obtained by relying on previous hidden states (i.e., �t−1), but on the previous
cell state (i.e., �t−1). Furthermore, the SRU units do not integrate the previous states
through a matrix multiplication (⋅) , which is a quite complex mathematical operation
to parallelize at the hardware level. This is because each dimension of the result-
ing output depends on all the entries of �t−1 , imposing a “waiting time” (in fact, a
delay) until the state �t−1 is fully computed. In turn, the SRU performs a point-wise
multiplication (⊙) , allowing the independence of each output’s dimension to obtain
part of the output without having the previous state �t−1 fully calculated. This point-
wise multiplication is also employed by the highway network [26], which adaptively
combines the current input �t with the cell state �t through the reset gate �t . Moreo-
ver, it reduces the vanishing gradient problem by implementing a skip connection
(1 − �t)⊙ �t ⋅ 𝛼 , controlled by the scaling correction constant � , which helps to
propagate the gradient signal.

(4)

�t = H
(

�f ⋅ �t + �f ⊙ �t−1 + bf
)

�t = H
(

�r ⋅ �t + �r ⊙ �t−1 + br
)

�t = �t ⊙ �t−1 +
(

1 − �t
)

⊙
(

�c ⋅ �t
)

�t = �t ⊙ �t + (1 − �t)⊙ �t ⋅ 𝛼

8872 M. E. Paoletti et al.

1 3

3.2 Proposed CUDA‑based SRU for HSI classification

The proposed SRU has been implemented over a GPU using CUDA, aiming at
increasing the model’s performance by parallelizing the operations given in Eq.
(4). In this context, it must be noted that the HSI data have been reshaped into an
n × n3 matrix (with n = n1 × n2) and divided into training Dtrain and test Dtest subsets
to adjust the parameters and validate the model, being Dtrain organized as batches
� ∈ ℝ

n3×nb , having each one nb sequences (i.e., pixels) of n3 features (i.e., spectral
bands).

Besides, the network has been implemented as a many-to-one model with one
cell that computes across input sequences to perform a single prediction from each
one, defining the hidden space ℝnh . From Eq. 4, each weight matrix �∗ dotted by
� is extracted, fusing these computations (by using cuBLAS) into a single matrix
multiplication that obtains the auxiliary matrix � ∈ ℝ

nb×k⋅nh of Fig. 2. It is worth
mentioning that, as a highway network’s point-wise operation is performed, if the
input and output data sizes are not the same, the � will introduce a fourth matrix
that will serve as the highway connection’s weights, setting k = 4 and performing
(1 − �t)⊙ (� ⋅ �t) in Eq. (4). With this in mind, a CUDA kernel composed by nb ⋅ nh
threads, arranged in the form of one-dimensional blocks, has been implemented.
Algorithm 1 shows a pseudocode of the aforementioned kernel, where all the data
structures (i.e., matrices and vectors) have been stored considering the C-style (i.e.,
row-major order) memory storage scheme. Moreover, Fig. 3 gives a graphical exam-
ple of how the CUDA threads access the positions of matrix � . Finally, our model

Fig. 2 General matrix-to-matrix multiplication between the current HSI data batch and the model’s
weights, optimized through cuBLAS library

8873

1 3

Scalable recurrent neural network for hyperspectral image…

considers the following hyperparameters: nb = 100 , nh = 144 , n3 = spectral bands
and k = 4 , setting the maximum number of threads per block to 512.

4 Experimental results

4.1 Hyperspectral datasets

In order to test the proposed SRU model for HSI classification purposes, we per-
form an exhaustive comparison between all the available recurrent architectures:
vanilla RNN, LSTM and GRU (implemented with CUDA and CuDNN) and the
proposed method, with the aim of quantifying the computational improvements
and the advantages that can be obtained in terms of performance and classifica-
tion accuracy. To this end, four widely used images in the field of HSI data classi-
fication have been considered: Indian Pines (IP), Big Indian Pines (BIG) and Sali-
nas Valley (SV), collected by AVIRIS, and the University of Pavia (UP) scene,

Fig. 3 Diagram illustrating the threads’ access to auxiliary matrix � , where black, red green and purple
arrows represent those threads with identifier 0, 1, 2 and nb ⋅ nh − 1 , respectively

8874 M. E. Paoletti et al.

1 3

collected by ROSIS. Figure 4 shows a summary of these datasets, including the
number of available labeled data in each case.

The IP, BIP and SV scenes were gathered by AVIRIS sensor [9] in 1992
over agricultural areas and comprise 145 × 145 × 200 , 2678 × 614 × 220 and
512 × 217 × 204 samples, respectively, organized in 16 and 58 different land-
cover classes. The UP scene was captured by ROSIS [13] over an urban area,
comprising 610 × 340 × 113 samples labeled with 9 different classes.

4.2 Experimental environment

Several implementations of the considered RNN-based models for HSI classifica-
tion have been developed and tested on a hardware environment with a i9-9940X
processor, located over an Gigabyte X299 Aorus, 128GB of DDR4 RAM, and an
NVIDIA Titan RTX GPU with 24GB GDDR6. In order to provide an efficient
implementation, the proposed model (together with the different RNN architec-
tures) has been parallelized on the GPU using CUDA 10.0.130 and cuDNN 7.6.0
language over the Pytorch framework, with Ubuntu 18.04.3 x64 as operating
system.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS VALLEY (SV)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10776 Background 164624 Background 56975

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009
Corn-notill 1428 Meadows 18649 Brocoli-green-weeds-2 3726
Corn-min 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow-rough-plow 1394
Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678
Grass/Trees 730 Bare Soil 5029 Stubble 3959

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579
Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11271

Oats 20 Shadows 947 Soil-vinyard-develop 6203
Soybeans-notill 972 Corn-senesced-green-weeds 3278
Soybeans-min 2455 Lettuce-romaine-4wk 1068
Soybean-clean 593 Lettuce-romaine-5wk 1927

Wheat 205 Lettuce-romaine-6wk 916
Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268
Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 207400 Total samples 111104

Fig. 4 Number of available labeled samples in the Indian Pines (IP), University of Pavia (UP), and Sali-
nas Valley (SV) HSI datasets

8875

1 3

Scalable recurrent neural network for hyperspectral image…

4.3 Experimental settings

Two main experiments have been conducted to perform an exhaustive analysis of
the performance and scalability of the proposed method, as compared with other
RNN architectures:

– Our first experiment compares the RNN models with a fixed percentage of train-
ing samples. In particular, 15% of randomly selected samples from the IP and
BIP scenes and 10% from the UP and SV scenes have been considered. The RNN
models have been implemented following the architecture proposed in [21]. The
main goal is to study the classification performance of the methods, using stand-
ard metrics such as the overall (OA) and average (AA) accuracy, and the kappa
coefficient (K). Also run times and number of parameters have been measured.
Moreover, two different implementations of vanilla RNN, LSTM and GRU have
been considered: (i) direct CUDA implementations and (ii) CuDNN library-
based implementations.

– Our second experiment evaluates the scalability and speedup of the proposed
model with different sizes of the input features. For this purpose, we have
reduced the dimensionality of the scenes (while retaining most of the informa-
tion in the scenes) using PCA. In particular, for the AVIRIS datasets, in addi-
tion to the original 200, 204 and 220 spectral bands, the RNN models have been
tested with 50, 100 and 150 principal components while, for the UP scene, 10, 40
and 80 principal components have been, respectively, considered, in addition to
the original 103 spectral bands.

4.4 Experimental discussion

4.4.1 Experiment 1: analysis of classification results

The results obtained in our first experiment are reported in Tables 1, 2 and 3. If
we focus on the classification accuracy, we can observe that, in general, the CUDA
implementations and their CuDNN counterparts reach similar OA, AA and K val-
ues, where vanilla RNN usually reaches the lowest accuracies. Comparing these
results with those obtained by the SRU-based model, we can conclude that the SRU
achieves intermediate results between the vanilla and LSTM/GRU, except for BIP
and SV scenes, where it reaches slightly worse results than the vanilla model (the
reason for this is that a strong overfitting was observed during the training stage,
while the complexity of the BIP’s classes is greater than in other datasets). This
indicates that the simplicity of the SRU (compared with LSTM and GRU) can nega-
tively affect the overfitting of the network (as it happens also with the vanilla RNN),
requiring regularization and standardization mechanisms (such as dropout) in order
to reduce this effect. The resulting classification maps can be seen in Fig. 5. As the
considered methods are pixel based, they all exhibit some “salt & pepper” noise in
the classification results being all very similar.

8876 M. E. Paoletti et al.

1 3

Ta
bl

e
1

 C
la

ss
ifi

ca
tio

n
re

su
lts

 o
bt

ai
ne

d
fo

r t
he

 IP
 d

at
as

et
, u

si
ng

 1
5%

 ra
nd

om
ly

 se
le

ct
ed

 sa
m

pl
es

 to
 p

er
fo

rm
 th

e
tra

in
in

g
st

ag
e

Th
e

be
st

m
et

ric
 v

al
ue

s a
re

 in
 b

ol
d

C
la

ss
Va

ni
lla

 R
N

N
LS

TM
G

RU

Pr
op

os
ed

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

1
28

.7
2

±
 7

.5
22

.0
5

±
 4

.7
6

38
.9

7
±

 1
3.

51
43

.5
9

±
 9

.5
9

55
.9

 ±
 6

.9
6

38
.9

7
±

 1
4.

27
35

.9
 ±

 9
.3

2
2

73
.8

2
±

 2
.1

5
70

.7
 ±

 2
.2

4
78

.1
9

±
 3

.3
3

75
.4

 ±
 3

.2
8

76
.5

7
±

 1
.2

8
75

.7
 ±

 3
.3

4
75

.8
 ±

 2
.7

5
3

55
.6

3
±

 3
.8

6
54

.5
2

±
 4

.3
9

62
.2

1
±

 4
.2

5
66

.1
8

±
 2

.5
64

.6
2

±
 3

.5
9

61
.7

6
±

 2
.7

5
65

.1
1

±
 4

.4
3

4
41

.7
9

±
 7

.4
1

43
.2

8
±

 5
.5

5
55

.9
2

±
 6

.5
1

56
.5
2

±
 9

.6
4

55
.4

2
±

 4
.7

2
55

.3
2

±
 7

.1
8

54
.2

3
±

 1
2.

67
5

86
.1

 ±
 2

.7
84

.9
8

±
 2

.0
8

89
.4

6
±

 3
.3

6
89

.4
6

±
 1

.3
7

86
.1

5
±

 4
.2

3
90

.8
8

±
 2

.8
3

86
.4

9
±

 2
.3

4
6

95
.0

 ±
 3

.0
3

94
.2

6
±

 1
.4

95
.4

8
±

 1
.1

7
96

.4
2

±
 1

.7
1

97
.0

 ±
 1

.6
8

97
.0

 ±
 0

.8
96

.9
7

±
 1

.0
4

7
40

.0
 ±

 1
2.

72
33

.9
1

±
 1

0.
79

61
.7

4
±

 1
6.

36
63

.4
8

±
 2

.1
3

61
.7

4
±

 6
.9

6
66

.0
9

±
 1

3.
01

68
.7

 ±
 6

.3
9

8
97

.9
8

±
 1

.0
6

97
.8

3
±

 1
.7

99
.4

1
±

 0
.5

1
99

.4
6

±
 0

.3
3

99
.8

 ±
 0

.2
4

99
.6

1
±

 0
.2

5
98

.8
7

±
 1

.3
2

9
10

.5
9

±
 6

.8
6

15
.2

9
±

 6
.0

36
.4

7
±

 9
.4

1
25

.8
8

±
 8

.8
24

.7
1

±
 1

4.
6

43
.5
3

±
 1

7.
69

29
.4

1
±

 1
1.

16
10

67
.5

8
±

 2
.7

2
70

.0
 ±

 7
.0

5
73

.7
3

±
 2

.7
6

75
.8
6

±
 3

.3
3

73
.3

4
±

 2
.4

9
73

.3
4

±
 3

.2
1

74
.5

5
±

 1
.2

5
11

77
.1

6
±

 1
.0

4
76

.6
6

±
 2

.7
5

82
.1
7

±
 2

.2
2

79
.6

9
±

 1
.2

8
81

.1
1

±
 1

.3
80

.6
5

±
 2

.7
4

79
.3

7
±

 1
.4

8
12

65
.6

 ±
 3

.9
4

67
.5

 ±
 8

.2
5

81
.3
5

±
 3

.5
4

80
.9

9
±

 0
.9

3
75

.4
 ±

 1
.3

1
80

.4
4

±
 5

.5
4

75
.2

8
±

 4
.3

5
13

96
.4

4
±

 3
.2

8
97

.2
4

±
 1

.2
3

98
.5

1
±

 1
.0

7
98

.7
4

±
 0

.4
3

98
.5

1
±

 0
.4

6
98

.2
8

±
 0

.8
9

99
.2

 ±
 0

.4
6

14
93

.6
 ±

 1
.5

2
94

.5
5

±
 1

.3
95

.3
3

±
 2

.5
7

94
.9

8
±

 2
.4

95
.0

 ±
 0

.9
8

95
.5
2

±
 1

.3
8

94
.8

5
±

 1
.3

8
15

63
.8

4
±

 4
.2

4
59

.2
1

±
 4

.4
7

70
.7

3
±

 6
.2

4
70

.8
5

±
 5

.2
6

71
.5

9
±

 3
.7

7
72

.8
 ±

 2
.8

2
65

.1
8

±
 4

.2
2

16
83

.2
9

±
 4

.4
1

85
.0

6
±

 2
.9

3
90

.1
3

±
 4

.0
3

90
.1

3
±

 5
.6

3
91

.6
5

±
 4

.5
88

.1
 ±

 5
.4

7
88

.6
1

±
 2

.1
2

O
A

76
.7

4
±

 0
.6

2
76

.3
 ±

 0
.7

3
81

.9
 ±

 0
.5

9
81

.4
7

±
 0

.5
5

81
.2

5
±

 0
.2

81
.3

3
±

 0
.5

2
80

.4
8

±
 0

.4
7

A
A

67
.3

2
±

 1
.0

5
66

.6
9

±
 1

.5
75

.6
1

±
 2

.3
3

75
.4

8
±

 1
.6

3
75

.5
3

±
 1

.0
4

76
.1
2

±
 2

.4
1

74
.2

8
±

 1
.6

2
K

(x
10

0)
73

.3
7

±
 0

.7
4

72
.8

6
±

 0
.9

79
.2
9

±
 0

.6
9

78
.8

4
±

 0
.6

3
78

.5
5

±
 0

.2
5

78
.6

6
±

 0
.6

77
.6

8
±

 0
.5

2
Pa

ra
m

et
er

s
23

47
04

24
75

68
24

32
80

23
09
28

Ru
nt

im
e(

s)
17

7.
5

±
 0

.7
48

.4
2

±
 0

.7
7

17
0.

26
 ±

 1
.4

5
53

.5
8

±
 1

.3
7

17
5.

9
±

 0
.9

9
49

.6
9

±
 1

.5
4

29
.9

 ±
 0

.2
3

Sp
ee

du
p

1.
0

3.
67

1.
04

3.
31

1.
01

3.
57

5.
94

8877

1 3

Scalable recurrent neural network for hyperspectral image…

Ta
bl

e
2

 C
la

ss
ifi

ca
tio

n
re

su
lts

 o
bt

ai
ne

d
fo

r t
he

 U
P

da
ta

se
t,

us
in

g
10

%
 ra

nd
om

ly
 se

le
ct

ed
 sa

m
pl

es
 to

 p
er

fo
rm

 th
e

tra
in

in
g

st
ag

e

Th
e

be
st

m
et

ric
 v

al
ue

s a
re

 in
 b

ol
d

C
la

ss
Va

ni
lla

 R
N

N
LS

TM
G

RU

Pr
op

os
ed

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

1
92

.6
9

±
 1

.7
9

91
.4

7
±

 0
.9

7
93

.3
5

±
 1

.0
9

94
.2
9

±
 0

.9
3

94
.0

4
±

 0
.6

94
.1

 ±
 1

.1
2

93
.6

7
±

 0
.9

5
2

97
.6

7
±

 0
.4

4
97

.2
2

±
 0

.5
97

.9
9

±
 0

.2
8

97
.5

5
±

 0
.4

3
97

.9
2

±
 0

.3
6

97
.4

3
±

 0
.5

4
97

.5
6

±
 0

.3
3

3
72

.0
8

±
 4

.4
6

72
.9

 ±
 2

.8
6

78
.7
3

±
 3

.4
9

76
.3

5
±

 1
.7

1
77

.8
1

±
 1

.3
9

76
.0

 ±
 3

.1
8

76
.8

3
±

 0
.9

6
4

92
.7

6
±

 1
.5

93
.4

6
±

 1
.0

9
93

.4
6

±
 0

.6
4

94
.8

6
±

 0
.4

4
94

.8
9

±
 1

.1
4

94
.5

3
±

 1
.5

1
93

.9
5

±
 1

.2
3

5
99

.6
9

±
 0

.0
6

99
.6

 ±
 0

.1
99

.6
5

±
 0

.1
9

99
.8

 ±
 0

.1
3

99
.8

 ±
 0

.1
5

99
.8
7

±
 0

.1
1

99
.6

2
±

 0
.1

7
6

89
.1

6
±

 0
.8

5
90

.9
9

±
 1

.3
9

89
.3

2
±

 0
.8

4
90

.2
2

±
 1

.7
8

89
.2

1
±

 1
.9

3
90

.1
 ±

 1
.8

6
89

.3
8

±
 1

.4
5

7
81

.6
4

±
 7

.1
86

.6
 ±

 5
.4

1
86

.5
2

±
 1

.8
2

83
.5

9
±

 5
.0

3
85

.6
3

±
 4

.4
4

86
.5

5
±

 2
.5

8
83

.7
6

±
 1

.2
7

8
85

.3
3

±
 3

.1
3

85
.4

6
±

 1
.5

2
88

.2
9

±
 1

.4
1

88
.0

3
±

 1
.9

87
.6

7
±

 2
.2

6
88

.4
 ±

 2
.1

9
87

.2
 ±

 1
.8

9
9

99
.7

9
±

 0
.1

1
99

.9
3

±
 0

.0
6

99
.6

9
±

 0
.2

2
99

.6
7

±
 0

.3
8

99
.6

 ±
 0

.0
6

99
.8

1
±

 0
.1

6
99

.8
6

±
 0

.1
4

O
A

92
.8

4
±

 0
.3

2
92

.9
3

±
 0

.0
9

93
.8

8
±

 0
.2

93
.8

1
±

 0
.0

6
93

.9
2

±
 0

.0
6

93
.8

1
±

 0
.1

2
93

.5
1

±
 0

.1
A

A
90

.0
9

±
 0

.9
8

90
.8

5
±

 0
.6

4
91

.8
9

±
 0

.3
2

91
.5

9
±

 0
.4

5
91

.8
4

±
 0

.4
6

91
.8

7
±

 0
.5

91
.3

1
±

 0
.2

3
K

(x
10

0)
90

.4
8

±
 0

.4
1

90
.6

1
±

 0
.1

2
91

.8
6

±
 0

.2
6

91
.7

8
±

 0
.0

8
91

.9
2

±
 0

.0
9

91
.7

7
±

 0
.1

7
91

.3
8

±
 0

.1
3

Pa
ra

m
et

er
s

76
80

9
89

67
3

85
38

5
73
03
3

Ru
nt

im
e(

s)
35

1.
9

±
 1

.3
3

10
9.

47
 ±

 0
.9

1
30

3.
16

 ±
 2

.0
2

11
8.

22
 ±

 0
.6

1
29

5.
75

 ±
 1

.1
9

11
0.

6
±

 1
.3

9
57

.7
3

±
 0

.2
1

Sp
ee

du
p

1.
0

3.
21

1.
16

2.
98

1.
19

3.
18

6.
1

8878 M. E. Paoletti et al.

1 3

Ta
bl

e
3

 C
la

ss
ifi

ca
tio

n
re

su
lts

 o
bt

ai
ne

d
fo

r t
he

 S
V

 d
at

as
et

, u
si

ng
 1

0%
 ra

nd
om

ly
 se

le
ct

ed
 sa

m
pl

es
 to

 p
er

fo
rm

 th
e

tra
in

in
g

st
ag

e

Th
e

be
st

m
et

ric
 v

al
ue

s a
re

 in
 b

ol
d

C
la

ss
Va

ni
lla

 R
N

N
LS

TM
G

RU

Pr
op

os
ed

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

C
U

D
A

C
uD

N
N

1
99

.6
3

±
 0

.0
9

99
.6

9
±

 0
.4

2
99

.8
3

±
 0

.0
9

99
.6

3
±

 0
.4

5
99

.9
1

±
 0

.0
9

99
.9
7

±
 0

.0
7

99
.7

 ±
 0

.2
3

2
99

.9
7

±
 0

.0
3

99
.8

8
±

 0
.1

8
99

.8
3

±
 0

.1
5

99
.9

8
±

 0
.0

3
99

.9
7

±
 0

.0
3

99
.9
8

±
 0

.0
1

99
.9

6
±

 0
.0

3
3

97
.4

6
±

 1
.4

9
98

.1
9

±
 0

.4
5

99
.7
3

±
 0

.1
4

99
.4

6
±

 0
.3

3
98

.6
6

±
 1

.2
1

99
.5

6
±

 0
.3

7
98

.8
2

±
 0

.5
8

4
98

.6
9

±
 0

.6
2

99
.1

7
±

 0
.2

8
99

.4
4

±
 0

.2
4

99
.3

 ±
 0

.2
4

98
.8

7
±

 0
.3

5
99

.2
3

±
 0

.2
6

99
.3

1
±

 0
.4

4
5

98
.3

8
±

 0
.5

3
98

.2
4

±
 0

.5
7

99
.0

5
±

 0
.4

1
99

.1
5

±
 0

.4
9

99
.0

4
±

 0
.5

3
99

.2
7

±
 0

.3
4

98
.7

4
±

 0
.4

8
6

99
.8

7
±

 0
.1

99
.8

1
±

 0
.1

2
99

.9
 ±

 0
.0

7
99

.8
6

±
 0

.0
9

99
.8

8
±

 0
.0

8
99

.8
9

±
 0

.1
99

.8
9

±
 0

.0
9

7
99

.7
8

±
 0

.1
4

99
.6

9
±

 0
.1

7
99

.7
5

±
 0

.1
99

.8
4

±
 0

.2
99

.7
9

±
 0

.1
99

.7
 ±

 0
.1

1
99

.7
6

±
 0

.1
1

8
88

.3
6

±
 1

.0
4

89
.4

2
±

 2
.2

7
88

.7
 ±

 1
.9

8
89

.8
 ±

 0
.9

7
88

.9
 ±

 1
.7

6
89

.3
4

±
 0

.6
88

.3
3

±
 1

.6
9

99
.8

1
±

 0
.1

4
99

.8
 ±

 0
.1

1
99

.7
2

±
 0

.2
99

.8
3

±
 0

.1
1

99
.9

1
±

 0
.1

99
.9
8

±
 0

.0
1

99
.8

6
±

 0
.0

8
10

96
.0

1
±

 0
.4

3
96

.1
7

±
 0

.9
2

97
.5

7
±

 0
.3

2
97

.5
7

±
 0

.5
1

97
.7

7
±

 0
.4

9
97

.9
 ±

 0
.2

3
96

.6
1

±
 0

.7
7

11
98

.0
9

±
 0

.7
5

96
.7

5
±

 0
.3

8
97

.7
7

±
 1

.8
4

98
.0

6
±

 1
.1

3
99

.3
3

±
 0

.2
5

97
.8

6
±

 1
.0

8
98

.3
8

±
 0

.4
7

12
99

.5
3

±
 0

.3
1

99
.0

8
±

 0
.9

1
99

.8
8

±
 0

.1
99

.7
 ±

 0
.4

7
99

.6
4

±
 0

.2
1

99
.8

6
±

 0
.1

1
99

.7
1

±
 0

.2
13

98
.7

1
±

 0
.7

6
98

.5
4

±
 0

.4
3

98
.8
8

±
 0

.7
5

98
.4

2
±

 0
.9

2
98

.8
6

±
 0

.6
9

98
.8

1
±

 0
.4

9
98

.7
6

±
 0

.4
4

14
96

.7
4

±
 1

.1
4

97
.0

9
±

 1
.5

8
97

.1
1

±
 1

.7
7

97
.6

3
±

 1
.0

6
97

.4
5

±
 0

.7
1

98
.0
9

±
 0

.8
9

96
.9

1
±

 1
.1

4
15

73
.3

1
±

 1
.1

2
69

.9
9

±
 5

.3
6

76
.9

4
±

 3
.2

2
75

.7
2

±
 0

.6
2

77
.6
2

±
 2

.1
6

77
.3

2
±

 0
.9

9
69

.9
4

±
 2

.6
3

16
99

.2
5

±
 0

.3
2

99
.3
2

±
 0

.2
8

99
.0

7
±

 0
.3

5
99

.0
9

±
 0

.3
8

99
.0

7
±

 0
.5

7
99

.1
9

±
 0

.6
1

99
.0

3
±

 0
.3

O
A

93
.3

2
±

 0
.2

1
93

.0
8

±
 0

.3
1

94
.1

 ±
 0

.2
2

94
.1

8
±

 0
.1

8
94

.2
6

±
 0

.2
5

94
.3
7

±
 0

.0
6

93
.0

 ±
 0

.0
9

A
A

96
.4

7
±

 0
.1

1
96

.3
 ±

 0
.2

8
97

.0
7

±
 0

.2
4

97
.0

7
±

 0
.0

5
97

.1
7

±
 0

.1
2

97
.2
5

±
 0

.1
2

96
.4

8
±

 0
.1

8
K

(x
10

0)
92

.5
5

±
 0

.2
3

92
.2

9
±

 0
.3

5
93

.4
3

±
 0

.2
4

93
.5

1
±

 0
.2

93
.6

 ±
 0

.2
8

93
.7
3

±
 0

.0
7

92
.1

9
±

 0
.1

Pa
ra

m
et

er
s

23
93

12
25

21
76

24
78

88
23
55
36

Ru
nt

im
e(

s)
56

4.
77

 ±
 1

.9
19

9.
83

 ±
 2

.0
9

55
2.

8
±

 1
.8

8
21

6.
65

 ±
 1

.5
4

56
7.

29
 ±

 1
.9

3
19

8.
25

 ±
 1

.5
1

74
.1
3

±
 0

.3
1

Sp
ee

du
p

1.
0

2.
84

1.
03

2.
62

1.
0

2.
86

7.
65

8879

1 3

Scalable recurrent neural network for hyperspectral image…

Focusing on the number of parameters and run times, we observe that both the
CUDA and CuDNN versions require the same number of parameters. However, their
run times are significantly different, being CuDNN faster. With this in mind, our model
exhibits the lowest number parameters, resulting in less computational requirements,
lower memory consumption and fast performance. In fact, the SRU is able to outper-
form all the optimized models in CuDNN. In order to analyze the speedup achieved
by these methods, we first note that the slowest one is the most basic model (i.e., the
vanilla RNN directly implemented in CUDA). Further, the CUDA versions of LSTM
and GRU achieve low speedups, while the CuDNN counterparts achieve an approxi-
mate speedup of x3 for the IP, BIP and UP dataset, and x2 for the SV scene. How-
ever, the speedups achieved by the proposed method are close to x5, x6 and x7 for the
IP, UP and SV scenes, respectively, and more than x10 for the BIP. This shows the
improved computational performance (and scalability with size) of the proposed SRU
implementation.

4.4.2 Experiment 2: speedup and scalability

The results of our second experiment are reported on the last rows of Tables 1, 2 and 3.
Once more, the CUDA implementation of vanilla RNN was the slowest model, and we
used it as a baseline to evaluate the other implementations. If we focus on the CUDA
LSTM and GRU, their speedup never exceeds x1.20 and even decreases when more
input features are used (e.g., for the IP and SV scenes). In turn, the CuDNN-based
models exhibit speedup values of x2 and x3, being the CuDNN-based vanilla model
the one with the highest speedup (closely followed by the GRU network). However,
these implementations do not scale well when additional input features are considered,
even reducing their speedup in some cases (e.g., for the SV scene). In this sense, the
proposed method not only reaches the highest speedup values, but the associated speed-
ups always increase with the number of input features (for instance in BIP) (Table 4).

Figure 6 shows a graphical representation of the runtimes measured (in s) for the dif-
ferent tested methods, as a function of the number of input features (spectral bands). As
we can observe, the CUDA versions of vanilla, LSTM and GRU are clearly the slowest
methods for the considered HSI datasets. These models are all negatively affected by

Table 4 Classification results obtained for the BIP dataset, using 15% randomly selected samples. Due to
space limitations, the accuracy of each class is not shown

The best metric values are in bold

Class Vanilla RNN LSTM GRU Proposed

CUDA CuDNN CUDA CuDNN CUDA CuDNN

OA 57.9 ± 0.49 58.12 ± 0.33 60.71 ± 1.39 60.28 ± 0.51 61.6 ± 0.33 61.38 ± 0.64 56.73 ± 0.22
AA 46.4 ± 0.58 46.09 ± 0.43 49.16 ± 1.14 48.31 ± 1.1 50.83 ± 0.68 49.47 ± 0.93 43.42 ± 0.55
K(x100) 54.34 ± 0.53 54.57 ± 0.34 57.42 ± 1.51 56.92 ± 0.54 58.42 ± 0.4 58.1 ± 0.69 53.04 ± 0.21
Parameters 849146 862010 857722 845370
Runtime(s) 5327.74 ±

107.52
1759.85 ±

107.58
5076.23 ±

77.47
1934.94 ±

68.97
5180.01 ±

52.87
1745.2 ±

89.31
508.19 ±

56.77
Speedup 1.0 3.03 1.05 2.75 1.03 3.05 10.48

8880 M. E. Paoletti et al.

1 3

the increase in the number of input features (i.e., the runtimes increase significantly
with the number of input features). However, the CuDNN counterparts exhibit better
computational performance and scalability than CUDA versions when the number of
input features increases. Finally, the proposed SRU-based model clearly exhibits the
lowest runtimes (which do not increase with the number of features), thanks to the opti-
mal parallelization of its point-wise operations. As a result, our method is not affected
by the inclusion of additional input features, scaling significantly better than the other
tested methods.

5 Conclusions and future work

In this paper, a new RNN model for HSI data classification is presented and dis-
cussed. The proposed model is based on the SRU architecture, which reduces the
internal complexity of other previously developed recurrent approaches (i.e., LSTM
and GRU) by decoupling the computational relationship between the current and
previous states in the network architecture. This is achieved by resorting to eas-
ily parallelizable, point-wise operations. Our experiments, conducted using four
benchmark HSI datasets, reveal that our method is able to achieve good classifica-
tion results using much fewer parameters than the traditional models (vanilla, LSTM
and GRU), therefore consuming less memory. Moreover, our parallelization strategy
significantly reduces the measured runtimes of the proposed method, which obtains
higher speedups as the number of pixels (and the dimensionality of input features) in
the HSI increase.

As future work, we will study the inclusion of standardization and regularization
methods to reduce the overfitting of the proposed model, with the goal of further
improving the reliability and precision of the obtained classification results.

(a) Ground-truth (b) V-RNN CUDA(c) V-RNN CuDNN (d) LSTM CUDA (e) LSTM CuDNN (f) GRU CUDA (g) GRU CuDNN (h) Proposed

Fig. 5 Classification maps of IP scene, using 15% randomly selected samples to perform the training
stage

Fig. 6 Graphical representation of the runtimes (in s) measured for the different tested methods, as a
function of the number of input features (spectral bands)

8881

1 3

Scalable recurrent neural network for hyperspectral image…

Acknowledgements This study was supported by Spanish Ministry (FPU14/02012-FPU15/02090,
ESP2016-79503-C2-2-P), FEDER and Junta de Extremadura (GR18060), and the European Union
(734541-EXPOSURE).

References

 1. Appleyard J, Kocisky T, Blunsom P (2016) Optimizing performance of recurrent neural networks
on gpus. arXiv :1604.01946

 2. Campos V, Jou B, Giró-i Nieto X, Torres J, Chang SF (2017) Skip rnn: learning to skip state updates
in recurrent neural networks. arXiv :1708.06834

 3. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral
data. IEEE J Select Top Appl Earth Obs Remote Sens 7(6):2094–2107

 4. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine
translation: encoder-decoder approaches. arXiv :1409.1259

 5. Cudahy T, Hewson R, Huntington J, Quigley M, Barry P (2001) The performance of the satellite-
borne hyperion hyperspectral VNIR-SWIR imaging system for mineral mapping at Mount Fitton,
South Australia. In: IGARSS 2001. Scanning the present and resolving the future. Proceedings.
IEEE 2001 international geoscience and remote sensing symposium (Cat. No. 01CH37217). IEEE,
vol 1, pp 314–316

 6. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals
Syst 2(4):303–314

 7. Gevaert CM, Suomalainen J, Tang J, Kooistra L (2015) Generation of spectral-temporal response
surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agricul-
ture applications. IEEE J Select Top Appl Earth Obs Remote Sens 8(6):3140–3146

 8. Goetz AF, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for earth remote sensing.
Science 228(4704):1147–1153

 9. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri
BE, Chovit CJ, Solis M, Olah MR, Williams O (1998) Imaging spectroscopy and the airborne vis-
ible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65(3):227–248

 10. Hochreiter S (1998) Recurrent neural net learning and vanishing gradient. Int J Uncertain Fuzziness
Knowl-Based Syst 6(2):107–116

 11. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
 12. Kumar DN, Reshmidevi T (2013) Remote sensing applications in water resources. J Indian Inst Sci

93(2):163–188
 13. Kunkel B, Blechinger F, Lutz R, Doerffer R, van der Piepen H, Schroder M (1988) ROSIS (Reflec-

tive Optics System Imaging Spectrometer)—A candidate instrument for polar platform missions. In:
Seeley J, Bowyer S (eds) Proceedings of SPIE 0868 optoelectronic technologies for remote sensing
from space, p 8 . https ://doi.org/10.1117/12.94361 1

 14. Landgrebe D (2002) Hyperspectral image data analysis. IEEE Signal Process Mag 19(1):17–28
 15. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
 16. Lei T, Zhang Y, Wang SI, Dai H, Artzi Y (2018) Simple recurrent units for highly parallelizable

recurrence. In: Proceedings of the 2018 conference on empirical methods in natural language pro-
cessing, Brussels, Belgium, October 31–November 4, 2018, pp 4470–4481. https ://doi.org/10.18653
/v1/d18-1477

 17. Li B, Zhou E, Huang B, Duan J, Wang Y, Xu N, Zhang J, Yang H (2014) Large scale recurrent neu-
ral network on gpu. In: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, pp
4062–4069

 18. Li Z, Chen J, Baltsavias E (2008) Advances in photogrammetry, remote sensing and spatial informa-
tion sciences: 2008 ISPRS congress book, vol 7. CRC Press, Boca Raton

 19. Manolakis D, Shaw G (2002) Detection algorithms for hyperspectral imaging applications. IEEE
Signal Process Mag 19(1):29–43

 20. Meerdink SK, Roberts DA, Roth KL, King JY, Gader PD, Koltunov A (2019) Classifying California
plant species temporally using airborne hyperspectral imagery. Remote Sens Environ 232:111308

http://arxiv.org/abs/1604.01946
http://arxiv.org/abs/1708.06834
http://arxiv.org/abs/1409.1259
https://doi.org/10.1117/12.943611
https://doi.org/10.18653/v1/d18-1477
https://doi.org/10.18653/v1/d18-1477

8882 M. E. Paoletti et al.

1 3

 21. Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classifi-
cation. IEEE Trans Geosci Remote Sens 55(7):3639–3655

 22. Murphy RJ, Monteiro ST, Schneider S (2012) Evaluating classification techniques for map-
ping vertical geology using field-based hyperspectral sensors. IEEE Trans Geosci Remote Sens
50(8):3066–3080

 23. Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D (2016) Accelerating recurrent neu-
ral networks in analytics servers: comparison of FPGA, CPU, GPU, and ASIC. In: 2016 26th Inter-
national Conference on Field Programmable Logic and Applications (FPL). IEEE, pp 1–4

 24. Paoletti ME, Haut JM, Plaza J, Plaza A (2019) Deep learning classifiers for hyperspectral imag-
ing: a review. ISPRS J Photogramm Remote Sens 158:279–317. https ://doi.org/10.1016/j.isprs
jprs.2019.09.006

 25. Plaza A, Du Q, Chang YL, King RL (2011) High performance computing for hyperspectral remote
sensing. IEEE J Select Top Appl Earth Obs Remote Sens 4(3):528–544

 26. Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Advances in neural
information processing systems, pp 2377–2385

 27. Weber C, Aguejdad R, Briottet X, Avala J, Fabre S, Demuynck J, Zenou E, Deville Y, Karoui MS,
Benhalouche FZ et al (2018) Hyperspectral imagery for environmental urban planning. In: IGARSS
2018-2018 IEEE international geoscience and remote sensing symposium. IEEE, pp 1628–1631

 28. Weninger F, Bergmann J, Schuller B (2015) Introducing currennt: the Munich open-source CUDA
recurrent neural network toolkit. J Mach Learn Res 16(1):547–551

 29. Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural
networks. Neural Comput 1(2):270–280

 30. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst
2(1–3):37–52

 31. Xu Y, Zhang L, Du B, Zhang F (2018) Spectral–spatial unified networks for hyperspectral image
classification. IEEE Trans Geosci Remote Sens 56(10):5893–5909

 32. Yang X, Ye Y, Li X, Lau RY, Zhang X, Huang X (2018) Hyperspectral image classification with
deep learning models. IEEE Trans Geosci Remote Sens 56(9):5408–5423

 33. Zhang X, Sun Y, Jiang K, Li C, Jiao L, Zhou H (2018) Spatial sequential recurrent neural net-
work for hyperspectral image classification. IEEE J Select Top Appl Earth Obs Remote Sens
11(11):4141–4155

 34. Zhou F, Hang R, Liu Q, Yuan X (2019) Hyperspectral image classification using spectral-spatial
LSTMs. Neurocomputing 328:39–47

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1016/j.isprsjprs.2019.09.006
https://doi.org/10.1016/j.isprsjprs.2019.09.006

	Scalable recurrent neural network for hyperspectral image classification
	Abstract
	1 Introduction
	2 Recurrent neural units: overview
	3 Proposed method
	3.1 SRU methodology
	3.2 Proposed CUDA-based SRU for HSI classification

	4 Experimental results
	4.1 Hyperspectral datasets
	4.2 Experimental environment
	4.3 Experimental settings
	4.4 Experimental discussion
	4.4.1 Experiment 1: analysis of classification results
	4.4.2 Experiment 2: speedup and scalability

	5 Conclusions and future work
	Acknowledgements
	References

