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Abstract
Hyperspectral imaging (HSI) collects hundreds of images over large spatial obser-
vation areas on the Earth’s surface, recording scenes at different wavelength chan-
nels and providing a vast amount of information. Recurrent neural networks (RNNs) 
have been widely used for the classification of HSI datasets, understood as a single 
sequence of pixel vectors with high dimensionality. However, the RNN model scales 
poorly when dealing with HSI scenes with large dimensionality. In order to miti-
gate this problem, this paper presents a new RNN classifier based on simple recur-
rent units that performs HSI classification in a highly scalable and efficient way. Our 
experimental results (conducted on four real HSI datasets) reveal very good perfor-
mance, not only in terms of classification accuracy (in line with existing methods), 
but also in terms of computational performance when dealing with large datasets.

Keywords Hyperspectral image · Recurrent neural networks · CUDA

1 Introduction

The significant advances in computing technology achieved in the last decade, cou-
pled with the newest developments in imaging spectroscopy [18], have allowed 
the development of new Earth observation (EO) missions with powerful airborne 
and satellite hyperspectral imaging (HSI) sensors, which can capture high-quality 
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images composed by hundreds of measurements (at different wavelength channels) 
over extensive spatial areas, acquiring information in hundreds of continuous and 
narrow bands, ranging from the visible to the near-infrared (NIR) and shortwave-
infrared (SWIR) [8] parts of the electromagnetic spectrum.

As a result, current spectrometers are able to produce very large HSI data cubes, 
where each pixel contains the spectral signature of the observed materials. These 
spectral signatures collect the physical–chemical behavior of materials in the pres-
ence of solar light, being unique for each kind of terrestrial object, and allowing to 
describe and identify each element of the scene, not only at an object level, but also 
at pixel (and even sub-pixel) level of detail [19], providing abundant information for 
the characterization of the surface of the Earth. Such information can be used in a 
wide range of human activities, such as hydrology [12], forestry [20], geology [22] 
and mineralogy [5]), as well as precision agriculture [7], urban planning [27], and 
prevention and management of disasters.

In this context, the analysis and processing of HSI datasets plays an important 
role in remote sensing [14], demanding the development of effective and efficient 
techniques for the analysis of these data. In particular, this paper focuses on meth-
ods that identify the content of an HSI scene by associating each pixel in the scene 
with a corresponding land-cover class. These methods can be described as the map-
ping function f (⋅, �) , where f ∶ � → � is able to relate each pixel of the HSI scene 
�i ∈ � with a land-cover category �i by adjusting its parameters � , obtaining at the 
end a classification map � with pairs of the form: {�i, �i}

npixels

i=1
.

Besides, it must be noted that HSI data present several challenges related to its 
volume and complexity. While a detailed spectral signature allows for the unique 
identification of each material in the scene, its large spectral dimension and content 
can further complicate the classification process, imposing significant storage and 
processing restrictions. As a result, classification methods must be efficient and scal-
able in the use of computational and storage elements [25]. Moreover, the use of a 
large number of spectral features increases the complexity of classification methods, 
hampering their performance and leading to lower classification accuracies with 
more features (peaking paradox). In the field of HSI, this issue corresponds with 
the curse of dimensionality phenomenon that, coupled with high intraclass variabil-
ity and interclass similarity, makes the classification problem an extremely ill-posed 
one.

Among available classification methods, deep neural networks (DNNs) [3] have 
attracted the attention of the HSI research community due to several characteris-
tics that facilitate the classification of these kinds of data, including the following 
aspects:

– They do not need prior information about statistical properties of the HSI data 
to extract and process the spectral, spatial and spectral–spatial information con-
tained in the scenes.

– Their working mode is based on the optimization of a loss function, for instance 
the mean square error (MSE) between the networks’ outputs and the desired 
outputs, through the adjustment of the networks’ parameters � . To achieve this, 
they employ a forward-backward iterative mechanism (based on gradient descent 
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optimizers) to find the optimal � , being able to work as universal approximators 
[6].

– They offer great flexibility in terms of learning models, i.e., unsupervised, super-
vised and semi-supervised.

– As stacks of layers composed by neurons, they provide a great variety of archi-
tectures, from shallow to deep and very deep ones, employing fully (or locally) 
connected neurons, and implementing one or more paths.

Moreover, advances in computing technology have allowed the implementation of 
deepest and more complex neural models, which have led to a revolution in deep 
learning (DL) techniques [15]. Focusing on HSI classification, these DNNs are able 
to extract representative features, learning simple representations at the first layers 
and extending them to more complex abstractions at the final layers (hierarchical 
learning), discovering nonlinear relationships in the input HSI data and yielding 
high performance in HSI classification [24, 32].

In particular, the recurrent neural network (RNN) [29] is an interesting classifier 
that presents an internal structure similar to a directed graph, implementing loops 
in the connections of the layers that force each node activation of the current step to 
depend on the activations of the preceding ones. In this sense, the RNN is a power-
ful model for learning sequences of data, storing an internal state that provides a 
memory to relate the current input data sample with the previous ones. At the end, 
these states allow to process the contextual information of the data, extracting tem-
poral features. The RNN has been previously employed to perform HSI data clas-
sification, considering each spectral pixel as the input sequential data of the model, 
as Mou et al. propose in [21]. Other approaches even combine spectral information 
with spatial information. For instance, Zhou et al. [34] concatenate the spatial infor-
mation of a neighborhood window (extracted with PCA [30]) to the spectral infor-
mation of the pixel. Zhang et  al. [33] consider several principal components (for 
which they extract Gabor textures and differential morphological profiles) which are 
combined and stacked to conform local spatial sequential (LSS) features that will be 
sent as input to the RNN model.

Nonetheless, all the aforementioned spectral and spectral–spatial methodologies 
must face an important restriction. In particular, RNNs have been shown to suffer 
from overfitting when the length of their input sequences is very large, which hap-
pens often when dealing with HSIs, since spectral bands are handled as sequences of 
length n3 in which each sequence feature is a band, so overfitting becomes more evi-
dent as n3 increases. To mitigate this problem, it is usual to include more informa-
tion to the model, e.g., grouping the spectral bands to enlarge the size of the features 
and shorten the length of the sequence. However, this practice hampers the scal-
ability and performance of the network. Also, as the sequence and/or feature length 
increases, the runtimes needed by the model become longer.

In order to improve the performance of RNN models (in terms of both runtimes 
and scalability), some interesting parallel versions and toolkits have been developed 
[1, 17, 23]. For instance, [28] presents a general RNN with a parallel implementa-
tion for graphics processing units (GPUs) based on NVIDIA CUDA. Other works 
focus on the skip of the hidden states [2] in order to speed up the data processing. 
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However, to the best of our knowledge, very few efforts have been focused on accel-
erating the processing of HSIs with RNNs. However, accelerating RNNs for HSI 
data processing can give an adequate solution to the problems of scalability, runtime 
and overfitting when dealing with the high spectral dimensionality of these kinds of 
data.

This paper investigates (for the first time in the available literature) the scalable 
implementation of a novel variant of the RNN model, called simple recurrent unit 
(SRU) [16], for HSI data classification. Comparing the SRU with traditional recur-
rent units, its architecture allows faster learning in terms of training speed, reduc-
ing the number of trainable parameters while maintaining a reliable performance (in 
terms of accuracy). Thus, the main goal of this paper is to reduce the internal com-
plexity of the RNN model (i.e., the relationships between the current outputs and the 
previous ones), thus facilitating the parallelization of the computations performed 
by the recurrent units in order to enhance the performance of traditional RNN mod-
els for HSI data classification.

2  Recurrent neural units: overview

An HSI data scene � ∈ ℝ
n1×n2×n3 can be represented as a matrix of n1 × n2 pixels, 

where each pixel �i is composed by n3 spectral bands. On this wise, the classification 
pursues to associate each pixel with a corresponding land-cover class (label), obtain-
ing a classification map � ∈ ℝ

n1×n2×nclasses ≡ {�i, �i}
n1⋅n2
i=1

.
RNN models for HSI data interpretation process the spectral signature contained 

in each �i as a time sequence, where the spectral bands are considered as time steps 
(see Fig. 1). This allows the pixels to be processed in band-by-band fashion [21]. 
Alternatively, the bands can be arranged into groups [31]. Moreover, the RNN 
model provides three different units: (i) vanilla recurrent unit, (ii) long short-term 
memory (LSTM) [11], and (iii) gated recurrent unit (GRU) [4]. The vanilla unit is 
the oldest and simplest model, as defined by Eq. (1):

Fig. 1  Traditional band-by-band RNN model for HSI data classification. The spectral signature contained 
in each pixel is processed as a temporal sequence, where different spectral bands correspond to different 
time steps
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Considering �t ∈ ℝ
n as the input sequential sample, the vanilla model computes the 

output �t as a hidden state at time t, i.e., �t = �t , by combining the current input 
with the unit’s data weights �h and bias bh and the previous state �t−1 , weighted 
by the connection weights �h , being H(⋅) a nonlinear activation function such as 
sigmoid or hyperbolic tangent (tanh). As a result, the obtained hidden state works as 
the memory of the model, and it is applied to the subsequent sample �t+1.

Due to its simplicity, the vanilla RNN tends to quickly degrade the interpreta-
tion of high-dimensional data, reaching poor classification results. The LSTM deals 
with the data degradation by reinterpreting the original RNN as a cell composed by 
two main states, the hidden �t and cell �t states, which are controlled by three gates 
known as input �t , output �t and forget �t gates, in order to manage the information 
flow that goes through the unit. This mechanism allows the LSTM to learn useful 
information along time, disregarding the irrelevant one.

As we can observe in Eq. (2), �t works as the traditional output of the unit, while 
�t includes (or removes) information into (from) the cell, depending on the gates’ 
values. Thus, the input gate �t determines whether a new input sample is allowed to 
reach inside the cell or not; the forget gate �t deletes the irrelevant information; and 
the output gate �t weights the unit’s output signal at time t.

However, this control-gate mechanism introduces significant complexity to 
LSTM. With this in mind, the GRU model tries to make a compromise between the 
simplicity of the vanilla unit and the high performance of the LSTM. In fact, the 
GRU can be considered as a simplified LSTM, with the output gate removed (this 
involves fewer parameters) and the input and forget gates evolved into update ( �t ) 
and reset ( �t ) gates, as Eq. (3) shows:

(1)�t =

{

0 if t = 0

H
(

�h ⋅ �t + �h ⋅ �t−1 + bh
)

if t ≠ 0

(2)

�t = H
(

�i ⋅ �t + �i ⋅ �t−1 + bi
)

�t = H
(

�f ⋅ �t + �f ⋅ �t−1 + bf
)

�t = H
(

�o ⋅ �t + �o ⋅ �t−1 + bo
)

�t =

{

0 if t = 0

�t◦�t−1 + �t◦H
(

�c ⋅ �t + �c ⋅ �t−1 + bc
)

if t ≠ 0

�t =

{

0 if t = 0

�t◦H
(

�t
)

if t ≠ 0

(3)

�t = H
(

�z ⋅ �t + �z ⋅ �t−1 + bz
)

�t = H
(

�r ⋅ �t + �r ⋅ �t−1 + br
)

��
t
= tanh

(

�h ⋅ �t + �t◦�h ⋅ �t−1 + bh
)

�t =

{

0 if t = 0

�t◦�t−1 + (1 − �t)◦�
�
t

if t ≠ 0
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Although these models are able to reach acceptable performance in HSI data classi-
fication, they present an important computational restriction due to the high depend-
ence on previous steps. In fact, although algebraic operations can be optimized and 
parallelized in hardware, such dependencies hamper the speedup as the amount of 
data (and the dimensionality of the feature space) grow, making the RNN model 
scale poorly in this context. In addition, the RNN suffers from overfitting and van-
ishing gradient [10] problems. When processing HSI data, these models can see 
their performance severely compromised when the spectral dimension of the images 
is too high. In order to overcome these limitations, in the next section we introduce 
a new RNN-based architecture that employs a SRU as the main block of the model.

3  Proposed method

3.1  SRU methodology

The SRU simplifies the internal architecture of the recurrent cell. With a design in-
between that of the LSTM and GRU models, it exhibits two main states: the hidden 
state �t and the cell state �t , controlled by the forget �t and reset �t gates, as Eq. (4) 
indicates:

Internally, Eq. (4) can be divided in two main components: (i) the light recurrence, 
which reads the input �t at time t and computes the forget gate �t and the cell state �t 
values (capturing the relevant sequential information), and (ii) the highway network, 
which obtains the unit’s output by using the reset gate �t and the hidden state �t.

Focusing on the light recurrence concept, we observe that gates and cell states 
are not obtained by relying on previous hidden states (i.e., �t−1 ), but on the previous 
cell state (i.e., �t−1 ). Furthermore, the SRU units do not integrate the previous states 
through a matrix multiplication (⋅) , which is a quite complex mathematical operation 
to parallelize at the hardware level. This is because each dimension of the result-
ing output depends on all the entries of �t−1 , imposing a “waiting time” (in fact, a 
delay) until the state �t−1 is fully computed. In turn, the SRU performs a point-wise 
multiplication (⊙) , allowing the independence of each output’s dimension to obtain 
part of the output without having the previous state �t−1 fully calculated. This point-
wise multiplication is also employed by the highway network [26], which adaptively 
combines the current input �t with the cell state �t through the reset gate �t . Moreo-
ver, it reduces the vanishing gradient problem by implementing a skip connection 
(1 − �t)⊙ �t ⋅ 𝛼 , controlled by the scaling correction constant � , which helps to 
propagate the gradient signal.

(4)

�t = H
(

�f ⋅ �t + �f ⊙ �t−1 + bf
)

�t = H
(

�r ⋅ �t + �r ⊙ �t−1 + br
)

�t = �t ⊙ �t−1 +
(

1 − �t
)

⊙
(

�c ⋅ �t
)

�t = �t ⊙ �t + (1 − �t)⊙ �t ⋅ 𝛼
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3.2  Proposed CUDA‑based SRU for HSI classification

The proposed SRU has been implemented over a GPU using CUDA, aiming at 
increasing the model’s performance by parallelizing the operations given in Eq. 
(4). In this context, it must be noted that the HSI data have been reshaped into an 
n × n3 matrix (with n = n1 × n2 ) and divided into training Dtrain and test Dtest subsets 
to adjust the parameters and validate the model, being Dtrain organized as batches 
� ∈ ℝ

n3×nb , having each one nb sequences (i.e., pixels) of n3 features (i.e., spectral 
bands).

Besides, the network has been implemented as a many-to-one model with one 
cell that computes across input sequences to perform a single prediction from each 
one, defining the hidden space ℝnh . From Eq. 4, each weight matrix �∗ dotted by 
� is extracted, fusing these computations (by using cuBLAS) into a single matrix 
multiplication that obtains the auxiliary matrix � ∈ ℝ

nb×k⋅nh of Fig. 2. It is worth 
mentioning that, as a highway network’s point-wise operation is performed, if the 
input and output data sizes are not the same, the � will introduce a fourth matrix 
that will serve as the highway connection’s weights, setting k = 4 and performing 
(1 − �t)⊙ (� ⋅ �t) in Eq. (4). With this in mind, a CUDA kernel composed by nb ⋅ nh 
threads, arranged in the form of one-dimensional blocks, has been implemented. 
Algorithm 1 shows a pseudocode of the aforementioned kernel, where all the data 
structures (i.e., matrices and vectors) have been stored considering the C-style (i.e., 
row-major order) memory storage scheme. Moreover, Fig. 3 gives a graphical exam-
ple of how the CUDA threads access the positions of matrix � . Finally, our model 

Fig. 2  General matrix-to-matrix multiplication between the current HSI data batch and the model’s 
weights, optimized through cuBLAS library
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considers the following hyperparameters: nb = 100 , nh = 144 , n3 = spectral bands 
and k = 4 , setting the maximum number of threads per block to 512. 

4  Experimental results

4.1  Hyperspectral datasets

In order to test the proposed SRU model for HSI classification purposes, we per-
form an exhaustive comparison between all the available recurrent architectures: 
vanilla RNN, LSTM and GRU (implemented with CUDA and CuDNN) and the 
proposed method, with the aim of quantifying the computational improvements 
and the advantages that can be obtained in terms of performance and classifica-
tion accuracy. To this end, four widely used images in the field of HSI data classi-
fication have been considered: Indian Pines (IP), Big Indian Pines (BIG) and Sali-
nas Valley (SV), collected by AVIRIS, and the University of Pavia (UP) scene, 

Fig. 3  Diagram illustrating the threads’ access to auxiliary matrix � , where black, red green and purple 
arrows represent those threads with identifier 0, 1, 2 and nb ⋅ nh − 1 , respectively
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collected by ROSIS. Figure 4 shows a summary of these datasets, including the 
number of available labeled data in each case.

The IP, BIP and SV scenes were gathered by AVIRIS sensor [9] in 1992 
over agricultural areas and comprise 145 × 145 × 200 , 2678 × 614 × 220 and 
512 × 217 × 204 samples, respectively, organized in 16 and 58 different land-
cover classes. The UP scene was captured by ROSIS [13] over an urban area, 
comprising 610 × 340 × 113 samples labeled with 9 different classes.

4.2  Experimental environment

Several implementations of the considered RNN-based models for HSI classifica-
tion have been developed and tested on a hardware environment with a i9-9940X 
processor, located over an Gigabyte X299 Aorus, 128GB of DDR4 RAM, and an 
NVIDIA Titan RTX GPU with 24GB GDDR6. In order to provide an efficient 
implementation, the proposed model (together with the different RNN architec-
tures) has been parallelized on the GPU using CUDA 10.0.130 and cuDNN 7.6.0 
language over the Pytorch framework, with Ubuntu 18.04.3 x64 as operating 
system.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS VALLEY (SV)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10776 Background 164624 Background 56975

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009
Corn-notill 1428 Meadows 18649 Brocoli-green-weeds-2 3726
Corn-min 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow-rough-plow 1394
Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678
Grass/Trees 730 Bare Soil 5029 Stubble 3959

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579
Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11271

Oats 20 Shadows 947 Soil-vinyard-develop 6203
Soybeans-notill 972 Corn-senesced-green-weeds 3278
Soybeans-min 2455 Lettuce-romaine-4wk 1068
Soybean-clean 593 Lettuce-romaine-5wk 1927

Wheat 205 Lettuce-romaine-6wk 916
Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268
Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 207400 Total samples 111104

Fig. 4  Number of available labeled samples in the Indian Pines (IP), University of Pavia (UP), and Sali-
nas Valley (SV) HSI datasets
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4.3  Experimental settings

Two main experiments have been conducted to perform an exhaustive analysis of 
the performance and scalability of the proposed method, as compared with other 
RNN architectures:

– Our first experiment compares the RNN models with a fixed percentage of train-
ing samples. In particular, 15% of randomly selected samples from the IP and 
BIP scenes and 10% from the UP and SV scenes have been considered. The RNN 
models have been implemented following the architecture proposed in [21]. The 
main goal is to study the classification performance of the methods, using stand-
ard metrics such as the overall (OA) and average (AA) accuracy, and the kappa 
coefficient (K). Also run times and number of parameters have been measured. 
Moreover, two different implementations of vanilla RNN, LSTM and GRU have 
been considered: (i) direct CUDA implementations and (ii) CuDNN library-
based implementations.

– Our second experiment evaluates the scalability and speedup of the proposed 
model with different sizes of the input features. For this purpose, we have 
reduced the dimensionality of the scenes (while retaining most of the informa-
tion in the scenes) using PCA. In particular, for the AVIRIS datasets, in addi-
tion to the original 200, 204 and 220 spectral bands, the RNN models have been 
tested with 50, 100 and 150 principal components while, for the UP scene, 10, 40 
and 80 principal components have been, respectively, considered, in addition to 
the original 103 spectral bands.

4.4  Experimental discussion

4.4.1  Experiment 1: analysis of classification results

The results obtained in our first experiment are reported in Tables  1, 2 and 3. If 
we focus on the classification accuracy, we can observe that, in general, the CUDA 
implementations and their CuDNN counterparts reach similar OA, AA and K val-
ues, where vanilla RNN usually reaches the lowest accuracies. Comparing these 
results with those obtained by the SRU-based model, we can conclude that the SRU 
achieves intermediate results between the vanilla and LSTM/GRU, except for BIP 
and SV scenes, where it reaches slightly worse results than the vanilla model (the 
reason for this is that a strong overfitting was observed during the training stage, 
while the complexity of the BIP’s classes is greater than in other datasets). This 
indicates that the simplicity of the SRU (compared with LSTM and GRU) can nega-
tively affect the overfitting of the network (as it happens also with the vanilla RNN), 
requiring regularization and standardization mechanisms (such as dropout) in order 
to reduce this effect. The resulting classification maps can be seen in Fig. 5. As the 
considered methods are pixel based, they all exhibit some “salt & pepper” noise in 
the classification results being all very similar.
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Focusing on the number of parameters and run times, we observe that both the 
CUDA and CuDNN versions require the same number of parameters. However, their 
run times are significantly different, being CuDNN faster. With this in mind, our model 
exhibits the lowest number parameters, resulting in less computational requirements, 
lower memory consumption and fast performance. In fact, the SRU is able to outper-
form all the optimized models in CuDNN. In order to analyze the speedup achieved 
by these methods, we first note that the slowest one is the most basic model (i.e., the 
vanilla RNN directly implemented in CUDA). Further, the CUDA versions of LSTM 
and GRU achieve low speedups, while the CuDNN counterparts achieve an approxi-
mate speedup of x3 for the IP, BIP and UP dataset, and x2 for the SV scene. How-
ever, the speedups achieved by the proposed method are close to x5, x6 and x7 for the 
IP, UP and SV scenes, respectively, and more than x10 for the BIP. This shows the 
improved computational performance (and scalability with size) of the proposed SRU 
implementation.

4.4.2  Experiment 2: speedup and scalability

The results of our second experiment are reported on the last rows of Tables 1, 2 and 3. 
Once more, the CUDA implementation of vanilla RNN was the slowest model, and we 
used it as a baseline to evaluate the other implementations. If we focus on the CUDA 
LSTM and GRU, their speedup never exceeds x1.20 and even decreases when more 
input features are used (e.g., for the IP and SV scenes). In turn, the CuDNN-based 
models exhibit speedup values of x2 and x3, being the CuDNN-based vanilla model 
the one with the highest speedup (closely followed by the GRU network). However, 
these implementations do not scale well when additional input features are considered, 
even reducing their speedup in some cases (e.g., for the SV scene). In this sense, the 
proposed method not only reaches the highest speedup values, but the associated speed-
ups always increase with the number of input features (for instance in BIP) (Table 4).

Figure 6 shows a graphical representation of the runtimes measured (in s) for the dif-
ferent tested methods, as a function of the number of input features (spectral bands). As 
we can observe, the CUDA versions of vanilla, LSTM and GRU are clearly the slowest 
methods for the considered HSI datasets. These models are all negatively affected by 

Table 4  Classification results obtained for the BIP dataset, using 15% randomly selected samples. Due to 
space limitations, the accuracy of each class is not shown

The best metric values are in bold

Class Vanilla RNN LSTM GRU Proposed

CUDA CuDNN CUDA CuDNN CUDA CuDNN

OA 57.9 ± 0.49 58.12 ± 0.33 60.71 ± 1.39 60.28 ± 0.51 61.6 ± 0.33 61.38 ± 0.64 56.73 ± 0.22
AA 46.4 ± 0.58 46.09 ± 0.43 49.16 ± 1.14 48.31 ± 1.1 50.83 ± 0.68 49.47 ± 0.93 43.42 ± 0.55
K(x100) 54.34 ± 0.53 54.57 ± 0.34 57.42 ± 1.51 56.92 ± 0.54 58.42 ± 0.4 58.1 ± 0.69 53.04 ± 0.21
Parameters 849146 862010 857722 845370
Runtime(s) 5327.74 ±  

107.52
1759.85 ±  

107.58
5076.23 ±  

77.47
1934.94 ±  

68.97
5180.01 ±  

52.87
1745.2 ±  

89.31
508.19 ±  

56.77
Speedup 1.0 3.03 1.05 2.75 1.03 3.05 10.48
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the increase in the number of input features (i.e., the runtimes increase significantly 
with the number of input features). However, the CuDNN counterparts exhibit better 
computational performance and scalability than CUDA versions when the number of 
input features increases. Finally, the proposed SRU-based model clearly exhibits the 
lowest runtimes (which do not increase with the number of features), thanks to the opti-
mal parallelization of its point-wise operations. As a result, our method is not affected 
by the inclusion of additional input features, scaling significantly better than the other 
tested methods.

5  Conclusions and future work

In this paper, a new RNN model for HSI data classification is presented and dis-
cussed. The proposed model is based on the SRU architecture, which reduces the 
internal complexity of other previously developed recurrent approaches (i.e., LSTM 
and GRU) by decoupling the computational relationship between the current and 
previous states in the network architecture. This is achieved by resorting to eas-
ily parallelizable, point-wise operations. Our experiments, conducted using four 
benchmark HSI datasets, reveal that our method is able to achieve good classifica-
tion results using much fewer parameters than the traditional models (vanilla, LSTM 
and GRU), therefore consuming less memory. Moreover, our parallelization strategy 
significantly reduces the measured runtimes of the proposed method, which obtains 
higher speedups as the number of pixels (and the dimensionality of input features) in 
the HSI increase.

As future work, we will study the inclusion of standardization and regularization 
methods to reduce the overfitting of the proposed model, with the goal of further 
improving the reliability and precision of the obtained classification results.

(a) Ground-truth (b) V-RNN CUDA(c) V-RNN CuDNN (d) LSTM CUDA (e) LSTM CuDNN (f) GRU CUDA (g) GRU CuDNN (h) Proposed

Fig. 5  Classification maps of IP scene, using 15% randomly selected samples to perform the training 
stage

Fig. 6  Graphical representation of the runtimes (in s) measured for the different tested methods, as a 
function of the number of input features (spectral bands)
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