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Abstract—Most existing endmember extraction techniques
require prior knowledge about the number of endmembers in
a hyperspectral image. The number of endmembers is normally
estimated by a separate procedure, whose accuracy has a large
influence on the endmember extraction performance. In order
to bridge the two seemingly independent but, in fact, highly
correlated procedures, we develop a new endmember estimation
strategy that simultaneously counts and extracts endmembers.
We consider a hyperspectral image as a hyperspectral pixel set
and define the subset of pixels that are most different from one
another as the divergent subset (DS) of the hyperspectral pixel
set. The DS is characterized by the condition that any additional
pixel would increase the likeness within the DS and, thus, reduce
its divergent degree. We use the DS as the endmember set,
with the number of endmembers being the subset cardinality.
To render a practical computation scheme for identifying the
DS, we reformulate it in terms of a quadratic optimization
problem with a numerical solution. In addition to operating as
an endmember estimation algorithm by itself, the DS method can
also co-operate with existing endmember extraction techniques
by transforming them into a novel and more effective schemes.
Experimental results validate the effectiveness of the DS method-
ology in simultaneously counting and extracting endmembers not
only as an individual algorithm but also as a foundation algorithm
for improving existing methods. Our full code is released for
public evaluation.!

Index Terms— Divergent subset (DS), endmember estimation,
hyperspectral image, spectral unmixing.
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I. INTRODUCTION

EMOTELY sensed hyperspectral images [1] provide

detailed information about different materials on the
surface of the earth. The detailed spectral information provided
by these images has been widely utilized for object classi-
fication [2]-[4], target identification [5]-[7], change detec-
tion [8]-[10], and so on. One common problem associated
with hyperspectral images is low spatial resolution, which
inevitably leads to mixed pixels. A mixed pixel in a hyper-
spectral image covers several types of materials, and the
corresponding spectrum is a mixture of several ground cover
spectra known as endmembers. The mixed pixel phenomenon
complicates the process of classifying one hyperspectral pixel
into one unique material type. To address the ambiguity, spec-
tral unmixing techniques [11]-[13] have been comprehensively
investigated for the purpose of extracting endmembers. These
techniques decompose each mixed pixel into a proportional
composition of endmembers. The constituent proportion with
respect to different types of materials [14] for each pixel is
referred to as the abundance.

One fundamental requirement for effectively performing
spectral unmixing is to accurately identify the endmembers
of a hyperspectral image. This is normally achieved by two
steps. First, the number of endmembers, i.e., the number
of types of pure pixels (possibly with noise) in the image,
is determined. Second, according to the number, the endmem-
bers are extracted from the hyperspectral image. We refer
to the overall procedures regarding estimating the number
of endmembers and endmember extraction as endmember
estimation [15] in this article. In Section I-A, we review the
literature about estimating the number of endmembers and
endmember extraction. In Section I-B, we briefly describe
the major contributions of this article in terms of presenting
a new endmember estimation framework that simultaneously
determines the number of endmembers and extracts their
spectral signatures.

A. Literature Review

Determining the number of endmembers [16], [17] is the
first step of endmember estimation. In the literature, the num-
ber of endmembers is normally regarded as prior knowledge.
However, such prior knowledge is almost unavailable in an
arbitrary hyperspectral image. In this scenario, if the number
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of endmembers is not accurately determined, most existing
endmember extraction techniques cannot operate properly.
The limitation regarding an unknown number of endmem-
bers hinders most existing endmember extraction techniques
from an operational viewpoint. To address the limitation,
various algorithms have been developed for estimating the
number of endmembers. Particularly, information theory-based
algorithms, eigenvalue thresholding algorithms, and geom-
etry characterization methods are three main families of
techniques for estimating the number of endmembers. The
first family includes information-theoretic criteria based on
minimum description length [18], Akaike’s information cri-
terion [19], the Bayesian information criterion [20], and so
on. Different models have been developed for encoding a
negative data log-likelihood term, based on which an accurate
estimation of the number of endmembers is expected to
be obtained when the model achieves a global optimum.
These strategies depend on the empirical configuration of
specific mixed models or likelihood functions, and inappro-
priate configurations would cause estimation errors of the
number of endmembers. The second family is related to the
eigenvalue thresholding schemes [21]-[23]. A threshold is
applied to eigendecomposition results from subspace analysis,
such as principal component analysis (PCA) [24], hyperspec-
tral signal subspace by minimum error (Hysime) [25], and
the so-called Harsanyi—Farrand—Chang (HFC) analysis [26].
The PCA-based approaches aim to characterize a cutoff gap
between the eigenvalues caused by signals and noise. However,
the variation between the two eigenvalues may be insignificant,
possibly resulting in an incorrect estimation of the number of
endmembers. The Hysime approach conducts spectrum noise
and the noise covariance estimation, which requires high com-
putational complexity. The HFC approach requires a constant
false alarm rate, which has an influence on the estimated
number of endmembers. The third family is characterized by
the geometry-based estimation of the number of endmem-
bers (GENE), which includes the convex hull (GENE-CH)
algorithm, the affine hull (GENE-AH) algorithm [27], and
so on. They assume that data samples should lie within a
convex hull (CH) or an affine hull (AH) with the endmember
signatures as vertices. GENE algorithms operate along with
an endmember extraction algorithm (EEA). In this scenario,
a maximum hull volume would stop the EEA from extract-
ing the next endmember signature. Therefore, the GENE
algorithms depend on the effectiveness of the EEA used,
and different EEAs cause different accuracies for counting
endmembers.

Once the number of endmembers has been determined,
the subsequent processing step for endmember estimation is to
extract the determined number of endmember signatures [28].
The N-FINDR algorithm and its derivatives, such as cofactor
NFINDR [29], geometric distance constrained N-FINDR [30],
and locality preserving N-FINDR [31], are representative
methods for endmember extraction. The N-FINDR-based algo-
rithms are devised to search for a simplex with the greatest
volume. The pixels that form the simplex are endmembers. The
N-FINDR algorithms repeatedly extract endmembers, and the
initial endmember matrix chosen from all pixel combinations
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is random. The simplex growing algorithm (SGA) [32] seeks
an endmember convex geometry with the minimum volume,
and it also requires specific initialization. To avoid repeated
identification of an endmember, the automatic target genera-
tion process (ATGP) [33] is proposed to extract endmembers
by utilizing the notion of orthogonal subspace projection. The
alternating decoupled volume max—min (ADVMM) [34] and
successive decoupled volume max-min (SDVMM) [34] are
developed for addressing the worst case simplex volume max-
imization problem by alternating optimization and by succes-
sive optimization, respectively. Specially, alternating volume
maximization (AVMAX) [35] and successive volume max-
imization (SVMAX) [35] have been exploited to character-
ize more comprehensive criteria. Negative abundance-oriented
(NABO) [36] uses the pixels outside the hull as alternative
candidate endmembers. Standard least-square optimization is
exploited to achieve estimates of endmember combinations
following the geometrical properties of hyperspectral signa-
tures [37]. The improved quantum-behaved particle swarm
optimization (IQPSO) [38] is a novel optimization algorithm
for hyperspectral endmember extraction. It is the first solid
work to construct quantum mechanics-driven evolutionary
computing algorithms, surpassing state-of-the-art evolutionary
computing EEA. In this scenario, the accurate number of end-
members is necessary for effective endmember extraction [39].

B. Contributions

As reviewed in Section I-A, existing studies for estimating
the number of endmembers and for extracting endmembers are
performed as two independent topics in the literature. Most
EEAs assume the known number of endmembers, but the
estimation algorithms of the number of endmembers tend to be
characterized by independent methods that may not seamlessly
benefit the EEAs. One overall goal of this article is to bridge
these two seemingly independent but, in fact, highly related
procedures in terms of establishing a unifying endmember
estimation framework. The major contributions of this article
are threefold.

1) We develop an overall endmember estimation frame-
work that simultaneously determines the number of
endmembers and extracts their endmember signatures.
Specifically, we define a new concept, i.e., the diver-
gent subset (DS), the computation of which extracts
endmembers without prior knowledge of the number of
endmembers. In addition, the cardinality of the DS is
naturally in accordance with the number of endmembers.
Our DS method is highly motivated by the concept of
the dominant set [40]-[42], which aims at extracting a
homogeneous cluster from a set. However, a DS and a
dominant set are defined in opposite ways. Specifically,
the DS seeks the largest difference, but the dominant
set characterizes the greatest homogeneity. Be that as it
may, the motivations and computational techniques con-
cerning the dominant set provide a tractable vehicle for
modeling our DS. To the best of our knowledge, we are
among the first to develop an automatic framework that
simultaneously counts and extracts endmembers.
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2) The DS framework provides a strategy for transforming
existing endmember extraction methods into a novel
and more accurate ones that do not require the knowl-
edge of the number of endmembers. To this end,
the DS co-operates with one arbitrary existing end-
member extraction method. As reviewed in Section I-A,
endmember extraction normally requires the knowledge
of the number of endmembers. We artificially set the
number of endmembers to be a value that is reason-
ably larger than the actual number of endmembers
and, subsequently, perform the endmember extraction.
In this scenario, the real endmembers are a subset of
the extracted pixels, which are redundant and with less
discriminativeness. We then apply the DS computation
to the extracted pixel set. The DS finely prunes the
coarsely extracted pixels, resulting in accurate end-
members with their number automatically determined.
Therefore, the DS framework not only is capable of
simultaneously counting and extracting endmembers by
itself but also can be considered as a foundation stone for
developing novel endmember extraction schemes based
on arbitrary existing endmember extraction methods.
The resulting endmember extraction schemes have no
requirement of knowing the number of endmembers but
exhibit the potential to provide better accuracy than the
original endmember extraction method.

3) The DS has the property that it encompasses pixels with
the largest unlikeness and any additional pixel would
decrease its unlikeness. Such property renders the DS
robust in both endmember counting and endmember
extraction. Experiments validate the advantages of the
DS over state-of-the-art endmember counting methods
and endmember extraction methods.

C. Paper Outline

The rest of this article is organized as follows. In Section II,
we present a series of definitions and then give a recur-
sive definition of a DS. In Section III, we explain the
possibility of using a DS to characterize endmembers.
In Section IV, we introduce a closed-form formulation of a
DS. In Section V, we describe how to numerically compute
the DS. In Section VI, we describe how to employ the DS
to transform existing endmember extraction methods into new
effective schemes. In Section VII, we empirically evaluate the
performance of the DS method in extracting and counting
endmembers on both synthetic and real data. In Section VIII,
we conclude this article with some remarks and hints at
plausible future research lines.

II. RECURSIVE DEFINITION OF A DS

We consider a hyperspectral image with L-band and N pix-
els as a hyperspectral pixel set X = [X|, X2, ..., X, ..., Xy] €
REN in which the nth pixel X, = [X1,, X2, . . ., Xz,]T € REX!
is an L-dimensional vector representing its L-band spectrum.
Let D € R™ denote the feature distance matrix, and
the (i, j)th element d;; of D represents the feature distance
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between the ith and jth hyperspectral pixels in a feature space.
The feature distance d;; is computed by the Euclidean distance

dij = Il xi —X; |2

= \/(xn —x1j)? + e+ (e — xpp) (1)

Let V = {1,2,..., N} denote the index set for all pixels in
the hyperspectral image. We give the following definitions
regarding a subset £ € V and derive the most important
concept in our work, i.e., the DS, at the end of this section.

Definition 1: We define the intrafeature distance dg(j) for
a pixel j € E with respect to the subset £ as follows:

_ 1
de() = — > dj. )

|E| ieE
It is easy to observe from (2) that E{j}(j) = 0 because
djj = 0 represents a self-feature distance of the pixel j.

The intrafeature distance dz(j) measures the average feature
distance between the pixel j € E and the rest of pixels in E.
It also reflects how different the pixel j € E is from the rest
of pixels in E. A large value of the intrafeature distance dz (j)
implies that the pixel j € E is generally very different from
the rest of pixels in E.

Definition 2: For the pixels j € E and i ¢ E, we define the
incremental feature distance Adj.(i) of the feature distance d;;
over the intrafeature distance dg(j) as follows:

Ady (i) = di; — d()). 3)

The incremental feature distance Ady (i) reflects a relative
feature distance between the pixel i ¢ E and the pixel set E,
with the pixel j € E being an intermediary between them.
It can be either positive or negative. A positive value of Ady (i)
implies that the feature distance between the pixel i ¢ E and
the pixel j € E is greater than the average feature distance
between the pixel j € E and those in E. In other words,
the difference between the pixels i and j is greater than
the general difference between the pixel j and those in E.
A negative value of Ady(i) implies that the feature distance
between the pixel i ¢ E and the pixel j € E is shorter than
the average feature distance between the pixel j € E and
those in E. That is, the difference between the pixels i and j
is less than the general difference between the pixel j and
those in E.

Definition 3: We define the divergent grade dg(i) of the
pixel i € E with respect to the subset E as follows:

dE(i)z{l’ P I )
> jery Adp(0)dr(j),  otherwise.

The divergent grade measures, in the feature space, how
distant one pixel is from all the pixels in the set. It can be
either positive or negative. A positive value of the divergent
grade dg(i) reflects that the pixel i is quite different from
most pixels in E. On the other hand, a negative value of the
divergent grade dg (i) indicates the indiscriminate resemblance
of the pixel i to the subset E.

Definition 4: We define the divergent degree of the pixel
subset E as follows:

D(E) =) _de(i). &)

ieE
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The divergent degree measures, in the feature space, how far
apart each pixel in E is from one another. It reflects the
unlikeness within a set. A big divergent degree value reflects
that any pair of pixels in E is very distant in the feature
space, i.e., they are quite different. On the other hand, a small
divergent degree implies that in E, some of the pixels are not
so far apart from another, such that they tend to be close to one
another in the feature space, i.e., at least some of the pixels
are very similar.

Proposition 1: For a nonempty set V in which the pixel
feature distances are not unique, there exists a subset E cVv
that satisfies the following two conditions.

1) VjekE, dp(j) > 0.

2) Vi ¢ E, dg (i) <0.

Proof: The proof of the proposition requires a Lagrangian
formulation. The evidence for the proposition can then be
identified via the Karush—Kuhn—Tucker (KKT) conditions. The
details can be found within the proof of Proposition 2 in
Section IV.

Definition 5: For a set V, we define the subset which
satisfies the two conditions in Proposition 2 as the DS E of
the set V. Equivalently, a DS is the one that has the largest

divergent degree.
The two conditions in Proposition 2 describe the two main

properties of a DS E. The first condition favors the internal
unlikeness of pixels within E. It requires that each pixel should
be far apart from any other pixels within E. The second
condition excludes external likeness. The incorporation of an
additional pixel outside £ into £ would increase its likeness
in terms of introducing a negative divergent grade. Therefore,
the additional pixel would decrease the divergence degree and
should be excluded, and we use the DS E as the endmember
set, and its number is the number of endmembers.

III. DS OF PIXELS AS ENDMEMBERS

The goal of endmember extraction from a hyperspectral
image is to identify a subset of pixels that are most different
from one another. The divergent degree provides a meaningful
tool for measuring the unlikeness of pixels within a subset,
with respect to pixels outside the subset. By Definition 5,
a DS represents a group of pixels with the largest divergent
degree. We, thus, consider the DS E as the endmembers of the
hyperspectral image. Furthermore, once a DS is determined,
the number of endmembers can be accordingly determined in
terms of its cardinality.

However, it is almost intractable to compute a DS based on
Proposition 2 and Definition 5. Specifically, according to (4),
recursively computing the divergent grade dg(i) of the pixel
i € E with respect to the subset E is computationally exhaus-
tive. To render a practical computation scheme, we introduce
a closed-form formulation of the DS in Section IV.

IV. CLOSED-FORM FORMULATION OF THE DS

We reformulate the concept of DS in terms of Lemma 2 and
Proposition 2 in this section.
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Lemma 1: The divergent grade d E“Ui(i) can be computed
as follows:

di i) =Y (dix — dj)dg (k). (6)

kek

Proof: The computing method for dg ; (i) requires ele-
mentary properties of the determinant. The detailed proof can
be found in [41, p. 98].

Proposition 2: The DS can be computed in terms of solving
the following quadratic optimization problem:

. I ¢
y = argmax =y Dy
y 2

N
.ty =0, Y yi=L @
i=l

The nonzero elements in the optimal § € R*! indicate
the DS.
Proof: We commence by the following setting:

dz(k .

. EQ% ifkeE

k= q D(E) (8)
0, otherwise.

According to Definition 5, we have D(E) = >, ; dg (k).
According to condition 1 of Proposition 2, for k € E,
dp (k) > 0. Therefore, the setting (8) plays the same role with
the conditions y; > 0 and Z,N:1 y; = 1 in the optimization
problem (7). It follows condition 1 of Proposition 2.

According to the second condition of Proposition 2, for
i¢ L, dgyi(i) < 0. Therefore, we have

dEUi(i)
D(E)

According to Lemma 1 and the setting (8), we have

diyi (@) _ > ket dix — djp)d g (k)

D(E) D(E)
dp(k dp
_ Z(dik (k) +dy Ed)
keE

<0. )

D(E) D(E)

= dudi — Y _di

keE keE
= (Dy); — (DY),

where (D§); and (D¥); represent the ith and jth elements
of Dy, respectively.

Based on (9) and (10), we have the relation between one
pixel i ¢ E and one pixel j € E formulated by using D and
y as follows:

(10)

Dy); — DY), <O. Y

The relation in (11) follows condition 2 of Proposition 2.
Therefore, the relations in (8) and (11) satisfy the two con-
ditions of Proposition 2, and they conceptually characterize a
DS. We then investigate whether the optimization problem (7)
leads to the same relations as (8) and (11).

As discussed earlier, the conditions y; > 0 and Z,N=1 yvi=1
for the optimization problem (7) are in accordance with the
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setting (8). Therefore, they follow condition 1 of Proposition 2.
Furthermore, the Lagrangian function for the optimization
problem (7) is given as

) [T A A
LG, 2y) = =38Py +20Q_ 5= =Y nde. (12)

keE keE

The KKT conditions for the optimization problem in (7)
require

oL R
— =Dy +2—y=0
Ok
Yy =0
7k = 0. (13)
Based on (13), we have
D) = 4 — . (14)

In addition, the complementary slackness of the KKT con-
ditions has specific requirements for the term J;y; = 0 as
follows:

Yk at y =0,
Yk at $; > 0,

it is required that y; > 0
it is required that y; = 0.
The proposition claims that one nonzero j; > 0 indicates

an endmember. According to the complementary slackness,
we have

yi >0 fori¢FE

y; =0 for jek. (15)
Based on (14) and (15), we have
Dy)i —DF); = (L —pi) — (A —7))
= =i
< 0. (16)

We observe that the relation in (16), which is derived from
the closed-form (7), is consistent with the relation in (11),
which follows condition 2 of Proposition 2. This proves
that the closed-form (7) and Definition 5 provide equivalent
formulations for characterizing a DS. This completes the
proof.

The relation in (16) is obtained subject to the KKT con-
ditions that are the necessary conditions of the closed-form
formulation (7) of a DS. The necessity proves the existence
of a DS, which is claimed in Proposition 2.

It is worth noting that the solution y; of the optimization
problem (7) not only extracts the endmember signatures in
terms of its nonzero elements but also indicates the number of
endmembers by counting the nonzero elements. The number of
nonzero elements in y is the cardinality of the DS and is equal
to the number of endmembers. Therefore, our DS method
simultaneously extracts endmember signatures and determines
their number.

Though Proposition 2 provides a principled manner for for-
mulating a DS, it is still difficult for us to obtain an analytical
solution. We will describe how to numerically compute the
optimization problem (7) in Section V.
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V. NUMERICAL COMPUTATION OF THE DS

We follow the strategy of replicator dynamics in evolution-
ary game theory [43] to numerically compute the solution for
the optimization problem (7) as follows:

new _ D)y

i =i YDy
where (D); is the ith column of the matrix D. The iterative
updates according to (7) make y converge to an optimum. The
convergence of the iterative computation is guaranteed by the
Baum—-Eagon inequality [44].

A7)

VI. IMPROVING ENDMEMBER EXTRACTION
TECHNIQUES VIA DSS

When implementing an endmember extraction technique,
we normally assume that the number of endmembers M in a
hyperspectral image X should be known as prior information.
Based on the information, M endmembers are identified by
the endmember extraction technique. If an estimated number
of endmembers M; < M 1is provided for the endmem-
ber extraction technique, at most M; correct endmembers
can be extracted and at least M — M; endmembers would
be ignored. On the other hand, if the endmember extrac-
tion technique, e.g., vertex component analysis (VCA) [45],
is informed of an estimated number of endmembers M, > M
(in Section VII-A2, we use the DS method to improve the
traditional VCA algorithm, and the value of M, is 50),
it extracts M, candidate endmembers that include the M
true endmembers. This observation makes sense for most
endmember extraction techniques because they tend to extract
a pixel, which is most different from others as an endmember
from iteration to iteration such that the M endmember should
be picked out before the iteration in which any of the (M, —M)
nonendmembers are extracted. It is also observed that the
(M, — M) extracted nonendmembers are not as discriminative
as the M endmembers. The addition of the subset of the
(M, — M) nonendmembers to the subset of M endmembers
increases the likeness of the M endmembers and, in turn,
reduces their divergent degree.

In the light of these observations, we use the DS as a
postprocessing procedure for finely pruning the M, candidate
endmembers extracted by the original endmember extraction
technique. Specifically, we consider the candidate endmembers
as a set and perform endmember extraction by computing the
DS of the candidate endmember set.

In this scenario, a novel improved endmember estimation
strategy is established according to the following three steps.
First, we assume the number of endmembers to be M,, which
is far greater than the actual number of endmembers M. Sec-
ond, based on the assumption, we apply an endmember extrac-
tion technique, e.g., VCA, to a hyperspectral image to obtain
a set of M, of candidate endmembers. Third, we compute the
DS of the candidate endmember set. The DS cardinality is the
number of endmembers, and the hyperspectral pixels in DS
are the endmembers.

One advantage of the strategy of the endmember extraction
improvement based on DSs is that it shares the effectiveness of
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an endmember extraction technique in determining individual
endmembers and avoids its limitation on the prior knowledge
of the number of endmembers. Therefore, the DS methodology
provides a foundation stone for improving existing endmember
extraction techniques.

VII. EXPERIMENTAL RESULTS

We use both synthetic data and real data to evaluate the
performance of the proposed DS methodology in extracting
and counting endmembers. The experimental results are com-
pared with eight EEAs, i.e., ADVMM [34], SDVMM [34],
AVMAX [35], SVMAX [35], p-norm-based pure pixel identi-
fication (TRIP) [27], ATGP [33], NABO [36], and SGA [32].
In addition, we experimentally compare the performance of the
DS, Hysime [25], HFC analysis [26], and the AH (GENE-AH)
algorithm [27] in estimating the number of endmembers.

We use three metrics, i.e., spectral information divergence
(SID), abundance information divergence (AID), and root-
mean-square error (RMSE) to evaluate the performance of
endmember extraction of the DS method and the com-
parison algorithms. Let X, = [x,Xp,.. L Xyl €
REM - denote the true endmember signatures and X =
X1, %2, ..., %, ..., Xyl € REM be the estimated endmem-
ber signatures, where M is the number of endmembers,
X = [XimsXoms e o oo Xims oo s Xrmlt € RN and &, =
[£1m> X2ms s Kims + -« » XLm]T € RE¥L. The probability distri-
bution vector of the mth true endmember signature is given by
P, = Xm/ Zf‘:l Xjm). The vector characterizes the variability
of spectral signatures. Let P, = [P, P2y ---sPps---»Pyl €
RE*M be the probability distribution matrix for X,, P =
[BrsDas--osDys---> Pyl € REM represent the probability
distribution matrix for X,, pim be the (i, j)th element of
matrix P,, and py,, be the (i, j)th element of matrix P. We have
the following equation:

X,

L
~ Pi
D(x, |X) = Z Pim log 5 =,
=1

(18)

Im

The relative entropy between X, and X is D(X.|X) =
[D(X] If{]), D(X2|§(2), ey D(XM|§(M)] S RIXM. The relative
entropy is asymmetric with respect to X, and X. To render a
symmetric metric based on the relative entropy, the SID [46]
is given by

SID = D(X.|X) + DX|Xo). (19)

In order to make comparisons based on more comprehensive
metrics, the abundance & for one pixel x with respect to the
estimated endmembers X is employed, and each element of
a=Ia,a,... B ay]"7 € RMx1 represents the abundance with
respect to one endmember. Let q € REX1 denote additive noise,
and the abundance in terms of a linear mixture method [47]

is given as follows:
x=Xa+q (20)

subject to the nonnegative and sum-to-one constraints

M
an =0, m=1,2,.. . M; Y ay=1. Q21

m=1
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The abundance vectors are used to replace the endmember
signatures in SID to derive more comprehensive metrics.
Let A, = [a1,a),...,4,,...,ay] € RV denote the true
endmember abundance and A = [a;,8,,...,4,,...,4y] €
RM*N be the estimated endmember abundance. Accordingly,

the AID is given as follows:

AID = D(A.|A) + D(A|A,). (22)

The matrix R is (A, — A), and R;; is the (i, j)th element of
the matrix R. The RMSE is given as follows:

[~=N M 4
RMSE — 2ici Ej:l R;
NM ’

The value of zero indicates the best endmember extraction
performance in terms of the metrics SID, AID, or RMSE.
Therefore, the value of the metric close to zero indicates
accurate endmember extraction.

(23)

A. Experimental Evaluations on Synthetic Data

The synthetic data are created based on the United States
Geological Survey (USGS) mineral spectra library.”> We gener-
ate synthetic data partially based on the linear mixture method
by Miao and Qi [48]. The linear mixture method provides two
families of synthetic data: 1) synthetic data with no pure pixels
and 2) synthetic data with multiple pure pixels for each type
of material. In our experiments, we test our methods in three
scenarios. In the first scenario, we incorporate one pure pixel
for each material type into the synthetic data from family 1.
We, thus, create our synthetic data with one pure pixel for
each type of material. In the second scenario, we use the
synthetic data from family 2 directly as our synthetic data with
multiple pure pixels for each type of material. Fig. 1 shows the
visualization results of the first and second scenarios. In the
third scenario, we add zero-mean Gaussian noise to family
2 as our synthetic data to evaluate the robustness of the DS
method to noise.

The original hyperspectral data do not guarantee to maintain
a metric space in which the feature distance can be conve-
niently measured. In order to compute the feature distance in
a principled manner, we commence by mapping the original
hyperspectral data into a low-dimensional space via PCA. The
Euclidean distance is used for measuring the feature distance
between pixels in the low-dimensional space, resulting in the
feature distance matrix D. We compute the DS indicator y
based on (17). The endmembers are extracted by identifying
the nonzero elements in the DS indicator y. Accordingly,
the number of nonzero elements is the number of endmembers.

It is worth noting that we use PCA to automatically map
the original hyperspectral data into a dimension reduction
space to obtain dimension reduction data. We first compute the
eigenvalues and eigenvectors of the covariance matrix of the
original data. We then compute cumulative contribution rate of
the eigenvalues and use the eigenvectors corresponding to the
eigenvalues whose the cumulative contribution rate exceeds
99.99% as the projection matrix. We finally use the projection

Zhttps://speclab.cr.usgs.gov/spectral-lib.html
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0]

Visualization results of synthetic data with different numbers of endmembers, i.e., 5, 10, 15, 20, and 25. (a)—(e) Synthetic data with one pure pixel

for each type of material. (f)—(j) Synthetic data with multiple pure pixels for each type of material.
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Fig. 2. Flowchart of two different endmember estimation methods. Dashed dotted line: method of the straightforward DS implementation. Solid line: method

of the DS for improving VCA (VCA-DS).

matrix to compute the dimension reduction data. It is also
worth noting that more sophisticated data mapping techniques,
such as manifold embedding methods, can be applied instead
of PCA. Furthermore, more comprehensive distance functions,
such as the Manhattan distance and the Mahalanobis distance,
can be used rather than the straightforward Euclidean dis-
tance. Although the alternative strategies have potentials for
improving the effectiveness of feature distance computation,
we use the basic PCA and the Euclidean distance in this article
because we aim to examine the effectiveness of our DS method
even in the situation that the most elementary feature compu-
tation strategies are applied. Fig. 2 shows how to complete

the overall endmember estimation task by straightforward DS
implementation and the DS for improving VCA.

1) Straightforward DS Implementation: We directly utilize
DSs on synthetic data with one pure pixel and multiple pure
pixels for each type of material. We obtain the divergent
indicator y based on (17), and the nonzero elements in y are
endmembers. Specially, the endmembers tend to be redundant,
and multiple pure pixels might be identified for one type
of material. To eliminate the redundancy, we compute the
correlation matrix for the preliminary selection of endmem-
bers. The standard correlation greater than a thresholding
value (i.e., 0.99 in our experiments) indicates high correlation
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Performance of the endmember extraction stage. (a)—(c) Synthetic data with one pure pixel for each type of material. (d)—(f) Synthetic data with
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Fig. 4. Performance of extracting endmembers. (a)—(c) Synthetic data with one pure pixel for each type of material. (d)—(f) Synthetic data with multiple

pure pixels for each type of material.

between pixels. Pixels that satisfy such high correlation con-
dition in the preliminary selection are considered as multiple
pure pixels for one type of material, and only one of them
is used as an extracted endmember. We employ the metrics
SID, AID, and RMSE to evaluate the endmember extraction
performance. Each performance metric indicates an accurate
result when its value is close to zero. Fig. 3 illustrates the

accuracy of different methods in extracting endmembers on
different synthetic data. The values of the metrics SID, AID,
and RMSE are almost close to zero for eight comparison
methods, and the NABO method has an error when the number
of endmembers is six on synthetic data with multiple pure
pixels for each type of material. Though the performance
of the straightforward DS implementation keeps accurate for
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Fig. 5. Performance of extracting endmembers on synthetic data with different noises. (a)-(c) SNR = 10 dB. (d)—(f) SNR = 15 dB. (g)—(i) SNR = 20 dB.

counting a medium number of endmembers, it decreases
when the number of endmembers exceeds ten. One possible
reason for this inefficiency is that the pairwise relationships
encoded by the DS are low order descriptions that are easily
contaminated by noisy and interfering observations. To cope
with this inefficiency of DSs for counting large numbers of
endmembers, we extend our straightforward strategy to that
described in Section VII-A2 and present the experimental
evaluation in the following sections.

2) DSs for Improving VCA: To neutralize the susceptibility
of DSs to noisy and interfering observations, we have pro-
posed an improvement strategy in Section VI. Specifically, we
commence by performing VCA on the original data with an
assumed number of endmembers 50, which is evidently greater
than the actual number of endmembers, and obtain a prelim-
inary endmember extraction result. We then perform DSs on
the preliminary result and obtain the divergent indicator y, and
the nonzero elements in the y are endmembers. We refer to the
novel strategy as VCA-DS. Fig. 4 shows the results of different
methods. We observe that our VCA-DS method is an effective
method for endmember extraction, and it is not limited by
the large number of endmembers. The reason for SID, AID,

and RMSE exhibiting very small values in Figs. 3 and 4 is
that the two types of synthetic data contain no noise, and the
endmember spectrums extracted by DS and VCA-DS are the
same as the reference spectrums.

Fig. 5 compares the performance of extracting endmembers
for different methods at various noise levels. The metrics SID,
AID, and RMSE are used to evaluate the sensitivity of different
methods in extracting endmembers to various noise (10, 15,
and 20 dB). We observe that the VCA-DS method is stable
compared to other methods in extracting endmembers when
the noise is different.

Fig. 6 shows a qualitative comparison between the end-
members extracted via the VCA-DS method and their cor-
responding true spectral signatures from the USGS spectra
library. From Fig. 6, we observe that the endmember signatures
estimated by the VCA-DS method are in good agreement
with the reference USGS spectral signatures. The results
shown in Fig. 6 reflect that the high accuracy of VCA-DS
in endmember extraction. All experimental evaluations about
endmember extraction validate that the VCA-DS method is
effective in endmember extraction without the prior knowledge
of the number of endmembers.
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Fig. 6. Reference signatures and estimated endmember signatures by VCA-DS method on synthetic data. (a) Alunite. (b) Chalcedony. (c) Dickite. (d) Illite.

(e) Jarosite. (f) Kaolinite.

Fig. 7 reports the performance of the VCA-DS method in
counting endmembers on synthetic data with one pure pixel
and multiple pure pixels for each type of material. As shown
in Fig. 7, the Hysime method has errors when the number of
endmembers exceeds 15 and 20 on the synthetic data with one
pure pixel and multiple pure pixels for each type of material,
respectively. Fig. 7 also reveals that the VCA-DS method and
the two traditional methods (HFC and GENE-AH) achieve
accurate estimations about the number of endmembers.

Tables I and II show the running average time of different
methods in extracting and counting endmembers on different
types of synthetic data. NABO and HFC are the fastest meth-
ods in extracting and counting endmembers, respectively. The
difference in the average running time of different methods
is very small. Especially, the VCA-DS method completes the

overall endmember estimation task, i.e., extracting and count-
ing endmembers, and other methods only complete one task,
i.e., either endmember counting or endmember extraction.
Therefore, VCA-DS is an efficient method in both extracting
and counting endmembers.

3) Observations: We have empirically evaluated our DS
methodology in two different tasks, i.e., endmember extraction
and endmember counting. Each comparison method is only
suited to one of the two tasks, and in contrast, our DS
method simultaneously conducts both tasks. In addition, our
DS method achieves comparable results in both tasks with the
task-specific state of the art methods.

The derivative of the DS method, i.e., the VCA-DS method,
can be viewed from two perspectives. On one hand, VCA can
be viewed as a preprocessing step for DSs. It primarily filters
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Performance of counting endmembers. (a) Synthetic data with one pure pixel for each type of material. (b) Synthetic data with multiple pure pixels

TABLE I
AVERAGE RUNNING TIME (SECOND) FOR EXTRACTING ENDMEMBERS ON SYNTHETIC DATA

Methods
Data type

SDVMM | ADVMM | AVMAX | SVMAX TRIP ATGP | NABO SGA VCA-DS
One pure pixel 1.4794 1.4703 1.5394 1.4797 1.4235 | 1.1476 | 1.1003 | 1.3824 1.5087
Multiple pure pixels 1.2249 1.2035 1.2120 1.1393 1.0821 | 0.9724 | 0.8612 | 1.1366 1.1553
Multiple pure pixels (10db noise) 1.5179 1.5384 1.4853 1.4039 1.4253 | 1.2495 | 1.1283 | 1.4616 2.3318
Multiple pure pixels (15db noise) 1.5120 1.5747 1.4695 1.4348 1.4236 | 1.3104 | 1.1463 | 1.4792 2.3011
Multiple pure pixels (20db noise) 1.6468 1.7343 1.6237 1.5999 1.5910 | 1.3606 | 1.2940 | 1.6055 2.5154

TABLE I

AVERAGE RUNNING TIME (SECOND) FOR COUNTING
ENDMEMBERS ON SYNTHETIC DATA

Methods
Data type
Hysime HFC GENE-AH | VCA-DS
One pure pixel 0.1456 | 0.0806 5.4391 1.5087
Multiple pure pixels | 0.1636 | 0.0775 5.5262 1.1553

out the noisy and interweaving pixels that are definitely not
endmembers but just interferes with endmember estimation
and leaves comparatively clean pixels from which endmembers
are simultaneously counted and extracted via the DS method.
On the other hand, as described in Section VII-A2, the DS
method can be considered as a postprocessing procedure
that improves the effectiveness of VCA without the prior
knowledge of the number of endmembers. Therefore, VCA
and the DS method are complementary to each other, and the

VCA-DS strategy forms an effective framework for simulta-
neously counting and extracting endmember. It is robust and
scalable to large numbers of endmembers.

B. Experimental Evaluations on Real Data

1) GOCI Data: We empirically test the DS method on
GOCI data that covers an ocean region with the existence of
green algae. Specifically, we test the DS method in terms of
computing the abundance with respect to its extracted green
algae endmember and accordingly estimating the green algae
area.

The GOCI data have eight bands and 1219 x 1175 pixels.
We use the DS method to extract endmembers from the GOCI
image. In our experiments, the DS method automatically
extracts two endmembers, each of which is denoted by f(ﬁ =
[x1, X2, ...,x.]". In order to determine which endmember
represents the green algae, we use the green algae spectrum
provided by the China State Oceanic Administration (CSOA)
as the reference spectrum r = [ry, 72, ..., r]T to identify the
green algae endmember. Specifically, we compute the spec-
tral angle arccos(rTﬁﬁ/lrl’l/z&ﬁ|’1/2) between the spectrum
of each extracted endmember and the reference spectrum.
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Fig. 8. Investigated ocean region with existence of green algae. (a) GOCI
image. (b) HJ-1B image. The GOCI image and HJ-1B image collected on
June 29, 2013. The same investigated regions are cropped from both the
GOCIT image and the HJ-1B images with the red rectangles, separately. The
sizes of the cropped patches look different because of the different resolutions
of the GOCI image and HJ-1B image.

We consider the endmember with the smallest angle to be
the green algae endmember.

We compute the abundance based on (20). We estimate the
area B of green algae blooms as follows:

N
B=$Y a()
i=1

where a(i) denotes the green algae abundance of the ith pixel
in the GOCI image, and S is the spatial resolution of GOCI
image. The spatial resolution of the GOCI image used in our
experiments is R = 500m. The green algae area is 69.18 km?.
To evaluate the accuracy of the green algae area estimation,
we use the HJ-1B data that were collected at a close time
to that of the GOCI data as the reference data. We consider
that the GOCI and HJ-1B images capture the same scene
at the same time. We manually segment the investigated
ocean regions from the GOCI image and HJ-1B image by
rectangles, as shown in Fig. 8(a) and (b), respectively. Though
surrounding the same region, the two rectangles appear in
different sizes in Fig. 8 because of the different resolutions
of the GOCI image and HJ-1B image.

We used the green algae area 83.75 km?, which is computed
based on the HJ-1B data as the baseline. The area estimated
via the DS method is close to the baseline. The results of the
green algae area on GOCI and HJ-1B data reflect that the DS
method extracts and counts endmembers effectively.

It is worth noting that the green algae area estimated by
the DS method and the cofactor N-FINDR method [29] are
different. The original assumption of the number of endmem-
bers for the GOCI data with no cropping is four [30], and
the cofactor N-FINDR method uses the assumption with-
out considering that the image cropping would reduce the
number of endmembers. Benefiting from the effectiveness
of the DS method with more accurate endmember estima-
tion, the green algae area estimated by the DS method is
more accurate than that by the cofactor N-FINDR method
reported in [29].

2) Samson, Jasper Ridge, Urban, and Cuprite Data: We
utilize four real data® to evaluate the performance of the
VCA-DS method in counting endmembers.

(24)

3http://lesun.weebly.com/hyperspectral-dataset.html
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TABLE III

RESULTS OF ESTIMATED NUMBER OF ENDMEMBERS BY
DIFFERENT METHODS ON FOUR REAL DATA

Real data
Methods
Samson | Jasper Ridge | Urban | Cuprite

Hysime 43 18 27 13
HFC 5 3 6 12
GENE-AH 4 4 4 18
DS 3 4 7 12
Actual number 3 4 6 12

The first real data is Samson, which contains three end-
members. Samson has 952 x 952 pixels, each of which has
156 bands covering the wavelengths from 401 to 889 nm.
The original image is too large, leading to very expensive
in terms of computational cost. In this article, a region of
95 x 95 pixels is used. The second real data are Jasper Ridge,
which has four endmembers. The Jasper Ridge data have
210 bands and 512 x 614 pixels with wavelengths ranging
from 380 to 2500 nm. We crop the original image into a
subimage of 100 x 100 pixels. The position of the first pixel is
(105, 269). We remove the bands 1-3, 108-112, 154-166, and
220-224 (due to dense water vapor and atmospheric effects)
and keep 198 bands in our experiments. The third real data is
Urban that has four endmembers. The Urban data have 307 x
307 pixels with wavelengths ranging from 400 to 2500 nm.
We remove the bands 1-4, 76, 87, 101-111, 136-153, and
198-210 (due to dense water vapor and atmospheric effects),
and the modified data have 162 bands. The forth real data
are the Cuprite [49]-[51], and it has 12 endmembers and
covers the Cuprite in Las Vegas, USA. Cuprite has 224 bands
with 250 x 190 pixels, and the wavelength ranges from
370 to 2480 nm. We remove some noisy bands (1-2 and
221-224) and water absorption bands (104, 113, 148, and
167) from the original 224 bands, and the modified Cuprite
data have 188 bands. The abovementioned four real data are
shown in Fig. 9.

Table IIT shows the performance of different algorithms in
counting endmembers. According to our experiments, Hysime
could not obtain accurate results on any real data set. HFC
achieves accurate performance on Urban and Cuprite data.
GENE-AH obtains accurate results on the Jasper Ridge data,
and the DS method produces accurate results on Samson,
Jasper Ridge, and Cuprite data and just has a minor error
on the Urban data.

Our VCA-DS method simultaneously counts and extracts
endmembers in the real data. Our experiments validate that
it extracts accurate endmembers for the real data. Due to the
page limitation, we did not illustrate the endmember extrac-
tion results here. Interested readers can conduct experiments
following our settings. Our full code is released for public
evaluation.*

“https://github.com/xuanwentao/DivergentSubset
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Fig. 9.

VIII. CONCLUSION AND FUTURE WORK

We have developed a new endmember estimation methodol-
ogy, referred to DSs, for simultaneously counting and extract-
ing in a hyperspectral image. The DS has been validated
to be capable of counting and extracting a medium number
of endmembers. However, due to the limited capability of
pairwise characterization in the DS method, it does not scale
up to a large number of endmembers in the condition of
noisy and interfering observations. To address this limitation,
we have developed a new DS-based strategy that first uses
an existing endmember extraction technique (e.g., VCA) to
extract an arbitrarily large number of candidate endmembers
and then uses the DS method to count and extract the
actual endmembers in the candidates. This strategy has been
validated to be effective to be scaled up to a large number
of endmembers, without the requirement of the number of
endmembers.

As with any new approach, there are some unresolved
issues that may present challenges over time. Specifically,
the DS method is one of the first available methods able
to simultaneously extract endmember signatures and estimate
their number in a hyperspectral scene. One limitation of the DS
method is the assumption of the existence of pure pixels in the
hyperspectral image. In our future work, we will investigate
how to simultaneously determine the number of endmembers
and extract the endmember signatures from hyperspectral
images without pure pixels.
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