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Abstract— Denoising is a common preprocessing step prior to
the analysis and interpretation of hyperspectral images (HSIs).
However, the vast majority of methods typically adopted for
HSI denoising exploit architectures originally developed for
grayscale or RGB images, exhibiting limitations when processing
high-dimensional HSI data cubes. In particular, traditional meth-
ods do not take into account the high spectral correlation between
adjacent bands in HSIs, which leads to unsatisfactory denoising
performance as the rich spectral information present in HSIs
is not fully exploited. To overcome this limitation, this article
considers deep learning models—such as convolutional neural
networks (CNNs)—to perform spectral–spatial HSI denoising.
The proposed model, called HSI single denoising CNN (HSI-
SDeCNN), efficiently takes into consideration both the spatial
and spectral information contained in HSIs. Experimental results
on both synthetic and real data demonstrate that the proposed
HSI-SDeCNN outperforms other state-of-the-art HSI denoising
methods. Source code: https://github.com/mhaut/HSI-SDeCNN

Index Terms— Convolutional neural networks (CNNs), denois-
ing, hyperspectral images (HSIs), spatial–spectral information.

I. INTRODUCTION

HYPERSPECTRAL sensors (also called imaging spec-
trometers) collect the information across the electromag-

netic spectrum in several contiguous and narrow bands, pro-
ducing high-dimensional hyperspectral images (HSIs) (or data
cubes) with hundreds of spectral bands [1], [2]. Compared to
other kinds of remotely sensed images, HSIs are characterized
by the rich spectral information that they convey. Rather than
focusing on spatial variations, the analysis of HSIs mainly
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focuses on spectral variations. In fact, the main idea behind
HSIs is to enlarge the spectral dimension of a pixel so that it
contains a unique and characteristic spectral signature for the
underlying objects on the surface of the Earth. In this context,
each pixel in an HSI is given by a B-dimensional vector, where
B is the number of spectral channels or bands [3].

Although hyperspectral satellites are still poorly represented
in space-borne missions, HSIs allow for better class discrim-
ination than multispectral images [4], fostering their use in a
wide range of application domains, including classification [5],
spectral unmixing [6], and target detection [7], among many
others. The quality of spectral signatures becomes crucial
for the correct interpretation of HSIs. However the acqui-
sition process introduces a significant amount of noise in
the data, which leads to intraclass variability and interclass
similarity [8]. This noise degradation is mainly due to two
factors: instrumental acquisition limitations and atmospheric
distortions [9].

In order to overcome these issues, image denoising is
typically adopted as a preprocessing step for noise removal
prior to HSI data analysis [10]. This is crucial for obtain-
ing accurate results in tasks such as classification, unmixing
and target detection. However, many techniques adopted for
HSI denoising are based on approaches that were originally
developed for grayscale or RGB images, disregarding the rich
spectral information contained in each HSI pixel. Moreover,
standard methods adopted for HSI denoising process the data
in a band-by-band fashion, applying traditional 1-D or 2-D
convolution kernels. Thus, they take into account only the
spatial information and disregard the information across the
bands, which is crucial for the analysis of spectral signatures.
For instance, available models, such as block matching and
3-D filtering (BM3D) [11] or weighted nuclear norm mini-
mization (WNNM) [12], have been applied to HSI images by
considering each band as a 2-D image, which leads to large
spectral distortions.

Another widely used strategy to denoise HSIs is to take
into account groups of three adjacent bands at a time as in
the case of the 3-D denoising convolutional neural network
(3D-DnCNN) [13]. This strategy, which is adapted from tech-
niques for RGB image denoising, often provides better perfor-
mance due to the fact that it considers the spectral correlation
between adjacent bands. However, given the large amount
of spectral bands contained in HSIs, considering groups of
three channels only represents a significant limitation. In the
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literature, HSI denoising techniques have evolved to incorpo-
rate spectral information. Available methods can be divided
into two main classes [14]: spatial filtering methods and
transform-domain filtering methods.

1) Spatial Filtering Methods: include the algorithm pro-
posed by Othman and Qian [15], a hybrid spatial–
spectral noise reduction (HSSNR) scheme that operates
almost independently in the spatial and spectral domains,
trying to accommodate the dissimilarity between the
spatial and the spectral dimensions. In this scheme, noise
is first removed from the spatial domain, where the
signal is relatively regular. Then, additional noise (as
well as those artifacts that may have been introduced
during the spatial denoising) are removed in the spec-
tral domain. Letexier and Bourennane [16] adapted a
generalized multidimensional Wiener filter (MWF) to
HSIs. The main disadvantage of spatial filtering methods
such as those mentioned earlier is that they are quite
sensitive to the transform domain, and cannot consider
the differences in terms of geometrical characteristics of
HSIs. As a result, they are not widely used for HSI data
denoising.

2) Transform-Domain Filtering Methods: include the
approach by Yuan et al. [17], a spectral–spatial adaptive
total variation(SSAHTV) model in which the spectral
noise differences and the spatial information differences
are both considered in the process of noise reduction.
Jiang et al. [18] proposed an extension of the BM4D
algorithm [19], which exploits the principal compo-
nent analysis (PCA) to perform HSI denoising. The
method by Lu et al. [20] is based on the spatial–
spectral adaptive sparse representation (SSASR), while
Zhao and Yang [21] fuse a sparse coding approach
together with a low-rank method by exploiting the
fact that HSIs are characterized by global and local
redundancy, and correlation in the spatial and spectral
domains. Zhang et al. [22] proposed a method called
low-rank matrix recovery (LRMR), in which the low-
rank property of HSIs is exploited, suggesting that
a clean HSI patch can be regarded as a low-rank
matrix. A subsequent method by He et al. [23], called
spatial–spectral total variation regularized local LRMR
(LLRSSTV), adopts a global total variation strategy
to reconstruct the clean patches. Finally, the low-rank
tensor approximation (LRTA) method by Li et al. [24]
preserves the global structure of HSIs and simultane-
ously removes outliers and different types of noise.

The major drawback of the aforementioned spatial-domain
and transform-domain methods is that, to achieve good per-
formance, they need to fine-tune the hyperparameters for
each HSI. This process is expensive from the viewpoint
of computational time and resources, and often requires an
external operator (i.e., a human expert) to correctly tune such
parameters for different HSIs.

In the last few years, deep learning [25], in general, and
CNNs [26], in particular, have been successfully used for auto-
matic processing of image data [27], with outstanding results
in tasks such as classification and object detection [28], [29].

This is mainly due to the following reasons: 1) the availability
of very large training sets, with millions of labeled examples;
2) the possibility to use powerful graphics processing
unit (GPU)-based implementations that make possible the
efficient training of very large models in practice; and
3) the definition of accurate model regularization strategies,
such as dropout [30]. In this sense, the application of deep
learning architectures [31], [32] and CNN models resulted in
powerful HSI data analysis techniques [33]–[36], including
denoising methods too. However, many CNN-based denoising
approaches are developed for grayscale or RGB images, and
cannot fully exploit the rich spectral information contained
in HSIs. Yuan et al. [37] proposed a residual CNN learning-
based (HSID-CNN) method for HSI denoising, taking into
consideration both the spatial and the spectral information
and without the need to manually tune the hyperparameters
for different HSI. This offers versatility, scalability, and
generalization properties when dealing with HSI denoising
tasks. Indeed, this method achieved the best HSI denoising
performance among all the available methods in literature.
However, it requires to train different models for each level
of noise present in the data, which does not provide a global
solution to the denoising problem.

In this article, an improved CNN architecture is developed to
efficiently perform HSI denoising. The proposed architecture,
inspired by a network typically used for grayscale and RGB
images (named FFDNet [38]), is called HSI single-denoising
CNN (HSI-SDeCNN). Instead of considering only the spatial
information contained in the scene, our newly developed
approach is able to jointly consider both the spatial and the
spectral correlation, outperforming previously available tech-
niques used in HSI denoising. The proposed HSI-SDeCNN
model takes as input a 3-D HSI scene, i.e., a h ×w data cube
(being h the height and w the width), and whose spectral
information is composed by a single band, together with its
adjacent K bands (coupled with a noise-level map). Then it
returns, as output, a single denoised image for each considered
band. In practice, it takes as input a volume of K + 1 bands
(stacked together with a noise-level map), and returns the
central noise-free band. Thus, this method allows us to perform
the denoising of the central band, taking as input its previous
and subsequent K/2 bands, resulting in a spectral–spatial
integration when denoising the HSI data.

The main advantages of the proposed HSI-SDeCNN with
respect to previous models can be enumerated as follows.

1) It provides a fast solution to the HSI denoising problem,
exploiting a down-sampling kernel that allows the net-
work to perform very fast without losing performance.

2) It takes as input a noise-level map, i.e., an estimation
of the noise level present in the volume to be denoised,
which allows us to control the trade-off between denois-
ing performance and detail preservation. This makes
our network flexible and adaptive to multilevel noise,
without the need to train different models for different
noise levels as it is, for example, the case in [37].

3) In our experimental analysis, it provided excellent results
on both synthetic images corrupted by additive white
Gaussian noise (AWGN) [9] and real HSI images,
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Fig. 1. Graphical illustration of the proposed methodology, composed of three main parts: 1) a preprocessing step; 2) a deep nonlinear mapping; and
3) a postprocessing step. First, a three-step preprocessing method is applied where K/2 adjacent bands from the original HSI scene are stacked at the
beginning and at the end of the cube X̃ in order to consider all the B spectral bands, including spectral–spatial information, to perform the denoising task.
Then, for the nth band (with n = {1, . . . , B}), the data cube X̃n is extracted considering the K/2 adjacent front and back bands. The obtained data cube is
reorganized in order to introduce the spatial-downsampled data representation X̂n . This X̂n is sent to the CNN model, obtaining (at the end) a noise-free data
representation Yn , which is upscaled to obtain a clean representation of the original nth spectral band Ỹn . Finally, the clean bands are concatenated together
to recover a noise-free HSI scene X.

demonstrating its full potential for practical HSI denois-
ing applications.

The remainder of this article is organized as follows.
Section II describes the proposed method and the adopted net-
work architecture. Section III illustrates data sets, implementa-
tion details and considered metrics. Furthermore, Sections IV
and V present, respectively, the experimental results obtained
on simulated and real data, together with a comparison with
the state-of-the-art methods. Finally, Section VI concludes
this article with some remarks and hints for plausible future
research lines.

II. METHODOLOGY

In this section, we describe the proposed HSI-SDeCNN
model and how it can be applied to HSI denoising tasks,
which can be processed by spectral, spatial, or spectral–
spatial models [9]. In this sense, the HSI scene can be
considered as a 3-D data structure, i.e., a volume denoted
by X ∈ R

h×w×B , where h × w indicates the number of
spectral samples (pixels), being each one a B-dimensional
spectral vector xi, j ∈ R

B = [xi, j,1, . . . , xi, j,B ]. On the one
hand, standard spectral-based models consider the pixel xi, j

as an independent element, processing the spectral information
in an isolated way and disregarding the spatial information
that surrounds it. On the other hand, the spatial models only
consider the spatial information extracted from a neighborhood
window, disregarding the spectral correlation between bands.
In this context, the proposed deep learning inspired model
attempts to overcome these limitations by considering spatial–
spectral patches. Consequently, the proposed model can be
regarded as a spatial–spectral one.

The denoising process has been carried out under the
assumption of AWGN. In particular, from the original noise-
free version of the HSI scene X, a noisy representation X̃ is
obtained by introducing an AWGN denoted as N = N (0, σ ),
which is based on a normal distribution with zero-mean and
variance σ to easily control the noise level. This allows
to obtain an independent and identically distributed noise,
introducing a controlled noise intensity and simulating the
effect of many random and uncontrolled processes that occur
in real scenarios, such as the remote sensing data acquisition

X̃ = X + N. (1)

In this sense, the goal of the proposed HSI-SDeCNN model
is to accurately recover from the corrupted data cube X̃ a
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noise-free image, X, cleaning the data band by band, and
incorporating spatial–spectral information. Fig. 1 provides a
graphical illustration of the proposed method. As we can
observe, the overall structure of the proposed method can be
divided into three main parts: 1) a preprocessing stage, where
the HSI data is prepared to be given as input to the neural
model, performing a spectral elongation of the data coupled
with downsampling and noise-level map concatenation steps;
2) the path through the neural model, which extracts more
abstract representations of the data, performing a nonlinear
mapping to obtain a noise-free output; and 3) a postprocessing
stage to recover the full HSI scene without noise, which
includes an upsampling of the network’s output and the
concatenation of the denoised spectral bands. In the following,
these stages will be describe in detail.

A. Spectral Elongation of the HSI Cube

The adopted strategy scans the spectral dimension in a
raster way and performs denoising one band at a time. That
is, the proposed HSI-SDeCNN model performs the denoising
task band by band, including the spatial information contained
into a neighborhood region h × w and the spectral correla-
tion between the target band and the K adjacent bands. The
motivation for this choice is that neighboring bands exhibit
high correlation, which decreases for bands that are further
away in terms of wavelength [39].

Based on this insight, for the nth band with spatial size
h × w, a data cube of size h × w × (K + 1) is considered,
where K is the number of adjacent bands with respect to the
central one, at position K/2+1. This data cube is obtained by
taking into account the front and back adjacent (K/2)-bands,
i.e., from the n − (K/2)th band to the n + (K/2)th spectral
band. For example, if we consider K = 24, the input volume
fed to the HSI-SDeCNN model will be of size h × w × 25,
and the output denoised band will be the one at position 13
(i.e., the central one). In this way, the proposed model exploits
the spatial–spectral correlation between the central band and
the K adjacent bands to provide a noise-free version of the
central band.

In this sense, in order to perform the denoising process
on the B available bands, the original HSI scene of size
h×w×B must be spectrally elongated so that further contigu-
ous bands are concatenated to the data cube at the beginning
and at the end, generating a volume of size h ×w × (B + K ).
The bands are stacked in reverse order, as shown in Fig. 1.
In this way, we can perform the denoising of all the B bands
in the original HSI cube, scanning for bands in a raster way.
In order to follow a simple mathematical notation, we will
denote the elongated and noisy data cube as X̃ ∈ R

h×w×(B+K )

and the input data cube obtained from the nth spectral band
as X̃n ∈ R

h×w×(K+1).

B. Downsampling

This operation is performed by a downsampling kernel
that reshapes the input HSI volume X̃n ∈ R

h×w×(K+1) into
several downsampled subcubes in order to reduce the spatial
dimension of the cube without losing information. Indeed,

the applied downsampling operation is a way of doubling the
receptive field, which sensibly reduces runtimes and memory
requirements while maintaining the denoising performance.
The scale factor is set to 2. In practice, this operation takes
the tth band of X̃n (i.e., t works as an index of the (K + 1)
spectral bands of X̃n , being t = {n − K/2, . . . , n + K/2}) and
reorganizes the h×w pixels contained in it into four subcubes,
each one with size w/2 × h/2, rearranging the pixels in the
different channels of the output image according to [40]

X̂n(i, j, t) = X̃n

(
2i + (t mod 2), 2 j +

⌊
t

2

⌋
,

⌊
t

4

⌋ )
(2)

where (i, j) indicates the spatial position of the resulting
pixel at band t , while “mod” and � � denote the magnitude
and the “floor” operations, respectively. Moreover, X̃n is the
input image extracted from X̃, and X̂n is the output of the
downsampling operation. In fact, this X̂n will be the input of
the CNN model, whose goal is to recover a noise-free image
of the nth band.

Further details about the downsampling layer employed in
the proposed method can be found in [40] and [41]. This
process is applied to all the spectral channels, and the obtained
subcubes are concatenated along the spectral dimension, gen-
erating the output volume X̂n ∈ R

h/2×w/2×4(K+1). This opera-
tion allows the network to be fast, without losing information,
which in the end improves the denoising performance.

C. Noise-Level Map Concatenation

In order to complete the information contained into the
network’s input data X̂n , as a previous step, a noise-level map
M ∈ R

h/2×w/2 is concatenated to the generated subcubes,
obtaining a volume of size h/2 × w/2 × (4(K + 1) + 1).
The noise-level map gives an estimation of the level of noise
σ present in the image. It is inserted as a map having the
same spatial dimension as the subcubes, in order to avoid any
mismatch in terms of dimensionality [38].

In this way, the network exploits this prior information
to control the trade-off between denoising performance and
detail preservation. This is because, as opposed to common
residual learning methods, adding a noise-level map makes
the model parameters (i.e., weights and biases) invariant to
the noise level of the input image. Thus, with this approach,
it is possible to handle both different noise levels and spatially
variant noise, with a single network architecture. Most model-
based denoising methods aim to solve the following problem:

arg min
X

1

σ 2 �X̃ − X�2 + λ�(X) (3)

where (1/σ 2)�X̃ − X�2 is the discrepancy between the noise-
free data X and the noisy data X̃ (with noise level σ ) and �(X)
is a regularization term associated with the image prior. In this
regard, the noise map M plays the role of λ in controlling
the trade-off between detail preservation and denoising perfor-
mance [38]. This improves the network’s flexibility, which can
handle images with various noise levels by simply specifying
the associated noise level map. M in our case is a uniform
matrix in which all elements are σ . Notice that the value of
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the noise level map (we refer to this as input noise level) can
differ from the noise level effectively present in the image (we
refer to this as ground-truth noise level). For this reason, in the
following, we denote the input noise level as σ̂ . In the testing
phase, we obtain the best results when the input noise level
map matches the noise level of the input image (σ̂ = σ ). The
results are degraded when there is a mismatch in the values.
Further analyses are presented in Section V.

D. Nonlinear Mapping

At this point, the obtained volume X̂n is fed to a standard
CNN. This model is composed by a stack of convolutional
and nonlinear activation layers. In this sense, the convolu-
tional (Conv) layer performs the basic feature extraction task
of the model, obtaining at each time a deep and abstract
representation of the input data. In particular, the proposed
model exploits Conv layers defined by 2-D kernels of size
K × k × k, where the lth layer (denoted as C(l)), receives as
input the feature data X(l−1) obtained by the previous layer.
Thus, K filters of size k × k are overlapped over X(l−1);
sliding across the width and height with a particular stride
s, the following equation indicates:

Y(l) = (W(l) ∗k×k X(l−1)) + b(l)

y(l)z
i, j =

k∑
î=1

k∑
ĵ=1

(
x (l−1)

(i·s+î),( j ·s+ ĵ)
· w

(l)z

î, ĵ

)
+ b(l). (4)

In this sense, the output data Y(l) could be obtained by
overlapping the layer’s weights W(l) with the input volume
data X(l−1). In fact, this operation performs a linear dot
product between the (î , ĵ)th weight of the zth filter that is
composed of the Conv layer, w

(l)z

î, ĵ
(with z = {1, . . . , K }), and

the corresponding (i, j)th element of the input data, x (l−1)
i, j .

Finally, the bias of the layer b(l) is added to the dot product,
obtaining as a result the (i, j)th element of the zth filter of
the output volume, y(l)z

i, j .
With the exception of the last layer, each Conv layer is

followed by a nonlinear activation layer, which is introduced
in order to extract the activation maps from the convolutional
output volume Y(l). In particular, this layer performs a function
H(·) to obtain the nonlinear relationships between the data

X(l) = H(Y(l)). (5)

H(·) can be implemented by many activation functions, such
as the tanh, sigmoid or rectified linear unit (ReLU) [42].
In the proposed model, the ReLU function has been selected,
which allows a faster training of the model due to its high
computational efficiency. The resulting output volume X(l) is
then sent as input to the next pair of Conv-ReLU layers.

Focusing on the proposed HSI-SDeCNN model, the imple-
mented CNN aims to learn a nonlinear mapping func-
tion being able to recover the noise-free image from the
noisy one. It takes as input the data X̂n of size h/2 × w/2 ×
(4(K + 1) + 1), obtaining as output the data Yn of size
h/2 × w/2 × 4. The output volume Yn represents the four
downsampled noise-free subcubes. For this reason, the last

layer does not have any activation function in order to keep
the extracted features. We have set the kernel size of each
layer to 3×3, while zero padding is employed to maintain the
original size of the feature maps. The number of layers in the
CNN is fixed to 14, while the number of channels for each
convolutional layer is set to 128, except for the last one, where
we use 4. The main reason why we use a larger number of
channels with respect to the standard FFDNet is the fact that
our network takes more channels as input, and hence more
features are required. As mentioned earlier, the noise-level
map controls the trade-off between denoising performance
and detail preservation. Furthermore, when the noise-level
map given as input to the network contains too high values
compared to the noise level of the input image, the obtained
denoised image is corrupted by artifacts [38]. For this reason,
the proposed HSI-SDeCNN model initializes the parameters
of each Conv layer using the orthogonal initialization method,
making the network more robust to changes in the noise level.

E. Upsampling and Concatenation

The final layer of our HSI-SDeCNN method is an upsam-
pling kernel that performs the inverse function of downscaling,
taking as input the four downsampled, noise-free images that
compose the CNN output volume Yn , and provides as output
a noise-reduced single band Ỹn of size h ×w × 1. The reason
for which the number of channels of the last CNN layer is
set to 4 is that we only expect one denoised band as output,
in particular the denoised version of the nth original band
selected as an input of the model. Thus, with an upsampling
factor of 2, this layer takes as input four subimages and
provides a single noise-free band.

Finally, once the B spectral bands have been processed, their
corresponding denoised version are stacked together in order
to compose the noise-free HSI scene X with size h × w × B.
A graphical representation of the overall process is shown
in Fig. 1, while Table I provides the details of the implemented
HSI-SDeCNN topology.

The methodology used in the proposed HSI-SDeCNN
allows us to achieve better performance than the standard
network when performing HSI data denoising tasks. Two main
improvements can be highlighted in comparison with other
denoising models. First and foremost, our method takes as
input a significantly larger number of bands, which allows the
network to exploit the spectral correlation between channels
(which is very high in HSIs). Second, since our network
considers an overlapping volume of bands, it can learn from
a larger amount of data, resulting in much better denoising
performance. In fact, the proposed method exhibits better
performance (both in terms of denoising and computational
time) when compared with other learning-based methods. This
is mainly due to 1) the downsampling layer, which allows us to
make the network faster without degrading performance, and
2) the input noise-level map, which is used as prior information
in order to achieve better denoising performance.

III. DESIGN OF EXPERIMENTS

We have evaluated the proposed HSI-SDeCNN method
using both synthetic and real HSIs. First, the effectiveness
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TABLE I

DATA VOLUMES AND CNN TOPOLOGY

of the method has been validated using simulated data. Then,
the method has been applied to real noisy images and the
results are compared with those of the current mainstream
approaches typically adopted in HSI denoising: HSSNR [15],
LRTA [24], block matching and 4-D algorithm (BM4D) [18],
LRMR [22], and HSI denoising exploiting a spatial–spectral
deep residual CNN (HSID-CNN) [37]. A quantitative and
qualitative analysis has been conducted for both simulated
and real data. Several quantitative metrics have been adopted,
together with a qualitative interpretation of false-color and
grayscale images.

A. Data Sets

In order to assess the effectiveness of the proposed method,
three HSIs have been considered: one of them is employed to
train the network and to conduct experiments by introducing
simulated noise, while the other two are used to evaluate the
proposed approach in real scenarios.

1) Training Data Set: In order to train the proposed model,
we have selected a part of the Washington DC Mall image
acquired by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) airborne sensor. This sensor records
210 spectral bands in the 0.4- to 2.4-μm region of the
visible and infrared spectrum. Bands in the 0.9- and 1.4- μm
regions (in which atmospheric interferers are present) have
been removed from the data set, resulting in a total
of 191 bands. The size of the Washington DC Mall image
is therefore 1208 × 307 × 191. The image has been divided
into two parts: one is used for training the proposed network
and the other is used for testing purposes. For the testing part,
we have cropped a region of size 200 × 200 × 191 from the
full image (the remaining parts are used for training).

2) Testing Data Sets: In order to evaluate the effectiveness
of the proposed method in real scenarios, experiments have
been conducted on the following data sets.

Fig. 2. Images used in the experiments: (a) Washington DC Mall, (b) Indian
Pines, and (c) University of Pavia.

1) Washington DC Mall: A cropped part of the entire image
(with size 200 × 200 × 191) has been employed for
experiments on simulated data in which synthetic noise
is added to the original image.

2) Indian Pines: This data set, acquired by the Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS), con-
sists of 145 × 145 pixels and 224 spectral bands.
After removing the water absorption bands (150 − 163),
the remaining 206 bands are retained for experiments.

3) University of Pavia: This data set, acquired by
the Reflective Optics Spectrographic Imaging System
(ROSIS), consists of 610 × 610 pixels and 103 spectral
bands. For testing purposes, only a cropped part of size
200 × 200 × 103 has been employed for experiments.

Fig. 2 shows a false-color composition of the three images
used in the experiments (we emphasize that the Washington
DC Mall and University of Pavia are cropped versions of the
original images).

B. Accuracy Metrics

In order to evaluate the performance of the proposed
approach on the simulated data, three commonly employed
metrics have been adopted: mean peak signal-to-noise-ratio
(MPSNR), mean structural similarity index (MSSIM), and
mean spectral angle (MSA). These metrics are respectively
used to calculate the average of the peak SNR (PSNR),
the structural similarity index (SSIM) [43], and the spectral
angle (SA) [44], [45] in the spectral domain.

For the real data experiments, since we do not have a
reference clean image, the performance of the method was
evaluated by conducting classification tasks. First, we apply
the denoising method to the real data, and then we conduct
classification (before and after the denoising process). As
a result, in the real data experiments, the quality metrics
employed are the overall accuracy (OA) and the kappa coeffi-
cient of the resulting classification maps. Fig. 3 shows the
ground-truth images of the Indian Pines and University of
Pavia data sets used in this article to evaluate the accuracy
of the classification task.

C. Implementation Details

In the following, we describe some implementation details
regarding the experiments. Before the denoising process, each
band of the considered HSIs has been scaled between [0,1].
In order to make a proper comparison with the HSID-CNN
network in [37], the number of adjacent spectral bands K
given as input to the network has been fixed to K = 24.
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Fig. 3. Ground-truth maps and related number of training samples of the
AVIRIS Indian Pines and the ROSIS University of Pavia Scenes.

The denoising task is performed for one band at a time,
meaning that for denoising a single band, the network takes
as input a volume of size h × w × K + 1. All the bands are
scanned in a raster way. In order to perform the denoising
process on the first and last K/2 bands, further adjacent
bands are concatenated to the full image of size h × w × B ,
at the beginning and at the end, generating a volume of size
h × w × B + K , as described in Section II. The proposed
model was trained with the Adam [46] optimizer, adopted to
minimize the following loss function:

L(�) = 1

2N

N∑
i=1

∥∥xdenoised
i − xnoise-free

i

∥∥2 (6)

where N is the number of batches, xdenoised is the output of the
network (i.e., the denoised batch), and xnoise-free is the label
batch. We set the patch size to 20, with stride equal to 20,
and we used rotation and flip-based data augmentation during
the training process, in which the noisy patches are generated
by adding different levels of AWGN noise (σ = [0, 100])
to the clean patches. Note that the network has been trained
following the model proposed in (1). However, rather than
adding noise to the entire clean HSI, noise has been inserted
in a patch-wise manner, with different noise configurations
at each epoch. In this way, the network is able to learn
different noise configurations, thus avoiding the problem of
the redundancy of the data in the training process.

Regarding the noise-level map M , it is given as input at
the same time as the specific noisy patch. For example, let us
assume that, for one specific patch, AWGN noise with level
σ = 25 is inserted. Then, the noise-level map M will be a
uniform matrix of size w/2 × h/2 × 1 in which all elements
are equal to σ̂ = 25. This allows the network to handle
different levels of noise without changing the model, only by

simply changing the input noise-level map. We set the mini-
batch size to 128.

The proposed HSI-SDeCNN has been trained with patches
extracted from the Washington DC Mall image. The total
number of patches extracted was 162 350 and, after data
augmentation, we obtained a total number of patches npatches =
324 864. We employed the MatConvNet [47] framework to
train the proposed HSI-SDeCNN on a PC having a sixth
Generation Intel Core i7-6700K processor with 8 M of Cache
and up to 4.20 GHz (4 cores/8-way multitask processing),
40 GB of DDR4 RAM with a serial speed of 2400 MHz,
an NVIDIA GeForce GTX 1080 GPU with 8-GB GDDR5X
of video memory and 10 Gb/s of memory frequency, a Toshiba
DT01ACA HDD with 7200 rpm and 2 TB of capacity,
and an ASUS Z170 pro-gaming motherboard. The software
environment is composed of Ubuntu 16.04.4 x64 as the
operating system, Matlab R2018b, and the compute device
unified architecture (CUDA) 9 for GPU functionality. The
training process is performed using 200 epochs.

IV. EXPERIMENTAL RESULTS: SIMULATED DATA

In this section, we present the results obtained on simulated
data related to the Washington DC Mall data set (test image).
In order to perform the experiments, AWGN noise has been
added to the noise-free HSI. We considered the same maxi-
mum level of noise for each band, where σn = [5, 100]. Here,
n indicates a generic band with n ∈ [1, B].

A. Results

Table II shows the results obtained for different noise levels
by the proposed method and the other mainstream techniques
used for comparison. The best metric values are presented in
bold. The reported values (mean and standard deviation) are
obtained by averaging the results on ten runs with different
noise configurations. The results of the last column (in blue)
were obtained after an ensemble of ten different runs for each
noise level and are displayed only for illustrative purposes
(they are not intended to make a comparison with the other
methods). As shown in Table II, our method provided the best
results for high noise levels. For low noise levels (such as
σn = 5), it exhibited performances comparable to those of the
others methods but using only one model.

For visual comparison purposes, we have selected bands 57,
27 and 17 to generate false-color images. Fig. 4 displays the
results obtained with σn = 100. Specifically, Fig. 4(a) shows
the noisy image before the denoising process, while Fig. 4(b)
shows the ground-truth image. Fig. 4(c)–(h) shows the result-
ing images obtained after applying different denoising meth-
ods. We can see that the HSID-CNN and the proposed method
outperform all other methods. In particular, the denoised
images provided by HSSNR and LRMR present significant
residual noise, while the images produced by BM4D and
LRTA contain artifacts. Instead, HSID-CNN and the proposed
HSI-SDeCNN generate denoised images that are very similar
to the ground-truth one. Furthermore, Fig. 5 shows the PSNR
and SSIM for each band. We can see that, in band 57,
the proposed method obtains lower performance with regard
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TABLE II

QUANTITATIVE EVALUATION OF THE PROPOSED METHOD AGAINST THE MAINSTREAM METHODS FOR HSI DENOISING (SIMULATED DATA SET)

Fig. 4. Denoising results on the Washington DC Mall image (experiments on
simulated data, with σn = 100). Bands 57, 27, and 17 are selected to generate
false-color images. (a) Noisy. (b) Ground-truth. (c) HSSNR. (d) LRTA.
(e) BM4D. (f) LRMR. (g) HSID-CNN. (h) Proposed.

to HSID-CNN. This is the reason why there is no visual
improvement in the reported bands.

A more detailed assessment is presented in Fig. 6, which
displays two zoomed regions of the Washington DC Mall
test image. It is possible to notice that the proposed and the
HSID-CNN methods obtain apparently similar results from
a visual point of view, but a quantitative analysis demon-
strates that our method performs better: HSID-CNN obtains
an MPSNR of 25.29 ± 0.0043, while the proposed method
obtains an MPSNR of 25.75 ± 0.0121. If we compare the
denoised images in Fig. 6(g) and in Fig. 6(b)–(e), it is clear
that the one obtained by the proposed method presents lower
residual noise than those produced by the other techniques,
without introducing as much blurring as the BM4D. This is
due to the fact that our method exploits the prior information
given from the input noise-level map, allowing the network to
maintain a good trade-off between denoising performance and
detail preservation.

It is important to emphasize that the quality of spectral
signatures is crucial for HSI interpretation, due to the fact
that they allow the discrimination of the physical properties
of different ground objects. In order to further provide infor-
mation about the effectiveness of the proposed method versus
HSID-CNN, Fig. 7 reports an analysis of the spectral signature
of a pixel. We can see that the spectral signature obtained
with the proposed method for the analyzed pixel is the most
spectrally similar to the corresponding spectral signature in
the original image.

B. Sensitivity to Parameter Tuning

In all our simulated experiments, we have set the input
noise-level map M to the same level of the noise added to
the image (i.e., ground-truth noise). Lower performances are
obtained when the input noise-level map differs from the actual
noise level present in the image. Roughly speaking, on the
one hand, when we set the input noise level to be higher
than the ground-truth noise (i.e., σ̂ > σ ), this means that
we perform too much denoising, smoothing out some image
details. On the other hand, if the input noise level is lower
than the ground-truth one (i.e., σ̂ < σ ), less denoising is
performed, leaving some residual noise in the output image.
Thus, a correct setting of the noise-level map (i.e., of the input
noise level) is important to obtain optimal performance as
displayed in Fig. 8, where different experiments are presented
setting different noise level maps. Specifically, denoising is
performed by using the same model employed in the other
experiments, but changing the input noise level from σ̂ = 5
to σ̂ = 100 with an interval of 5. The ground-truth noise
in the image is fixed to σn = 50 for all the bands, and for
the evaluation, the MPSNR is chosen as the metric. Note
that we achieve the best results when the input noise-level
map is set to the same level of the ground-truth noise (i.e.,
σ̂ = 50). However, after analyzing the plot, one can see that
it is not necessary to perfectly adjust the input noise level to
achieve good performance. Indeed, our method outperforms
the HSID-CNN even if we set the input noise level to a value
that does not perfectly match the ground-truth noise. In this
regard, as shown in Fig. 8, it is important to note that, for the
considered data set, setting a higher value of the input noise-
level map is better than setting a lower value of the map (with
respect to the ground-truth noise).
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Fig. 5. Values of the different denoising methods in each band of the simulated data set with noise level σn = 100. (a) PSNR. (b) SSIM.

Fig. 6. Zoomed-in denoising results on the Washington DC Mall image (experiments on simulated data, with σn = 100). Bands 57, 27, and 17 are selected
to generate false-color images. (a) Ground-truth. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) HSID-CNN. (g) Proposed.

Fig. 7. Analysis of the quality of the restoration of the spectral signature
at pixel (83, 175) in the original image: noisy version (green color), original
signature (black color), signature obtained after applying HSID-CNN (red),
and signature obtained after applying the proposed method (blue). The vertical
axis (digital number) is scaled in the range [0, 1].

We emphasize that the input noise level is the only parame-
ter that needs to be tuned: it allows us to perform denoising
at multiple noise levels. In fact, all the results that we have
obtained with HSI-SDeCNN are extracted with only one
model, trained with different levels of noise from 0 to 100.

Thus, from both the qualitative and quantitative comparisons
using simulated data, we can conclude that our method out-
performs all the other considered methods. In the next section
we discuss real HSI experiments to verify the effectiveness of
our method in real scenarios, in which the noise level differs
from one band to another.

C. Training Evolution

To conclude this section, we show the training evolution
over 200 epochs. The validation phase of the network has

Fig. 8. MPSNR versus different input noise levels. The blue plot represents
the performance of our method against different input noise levels, while the
orange plot represents the results obtained with the HSID-CNN algorithm
(simulated data set).

been carried out at each epoch, with both input noise level
(i.e., the noise-level map) and ground-truth noise level equal
to 100. Fig. 9 displays the training evolution versus the number
of epochs for the loss function [see Fig. 9(a)], the MPSNR [see
Fig. 9(b)], and the MSSIM [see Fig. 9(c)].

V. EXPERIMENTAL RESULTS: REAL DATA

In this section we present the results obtained on the
AVIRIS Indian Pines and ROSIS University of Pavia real
HSIs. We emphasize that also in this case the results have
been extracted with the model trained only on the Washington
DC Mall image. In order to assess the effectiveness of the
proposed method with these HSIs, classification experiments
are conducted (a ground-truth noise-free image is not available
for these data). The quality of the denoising is measured
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Fig. 9. Training evolution after each epoch. (a) Loss. (b) MPSNR. (c) MSSIM. The validation process has been carried out by setting both the input noise
level and the ground-truth noise to 100.

by analyzing the classification accuracy before and after the
denoising process. The metrics adopted are the OA and the
kappa coefficient. A support vector machine (SVM) with
linear kernel has been employed as a simple classifier. For
the training of the classifier, we randomly selected 10% of
the available labeled samples from each class, and used the
remaining labeled samples for testing purposes.

Since the noise level is unknown in real HSIs, the proposed
denoising algorithm has been applied by empirically setting
the input noise-level map to the one that shows the best
performance among the following input noise levels: σ̂ = 5,
25, 50, 75, 100. For both the Indian Pines and the University
of Pavia data sets, this resulted in the selection of σ̂ = 50.

A. Indian Pines Data Set

The Indian Pines data set is seriously degraded by Gaussian
noise and impulse noise. For visual assessment purposes,
we use band 2 for grayscale visualization. Fig. 10 shows
the grayscale images obtained after applying the different
methods.

By analyzing Fig. 10, it is possible to see that the HSSNR
method leaves significant residual noise in the image, in par-
ticular dense noise and stripes. BM4D and LRMR methods,
instead, exhibit superior denoising performance, but they still
leave residual noise in the image (the BM4D output presents
heavy strip noise, while the LRMR algorithm shows higher
ability in the task of reducing this kind of noise, but still
presents dense residual noise). In turn, HSID-CNN and the
proposed HSI-SDeCNN exhibit much better performance, as it
can be observed in the magnified region shown in Fig. 10.
Indeed, both methods remove dense and strip noise without
introducing any significant blur. From a visual point of view,
the two methods perform similarly. However, we can note that
the denoising performance of the proposed method varies from
one band to another, depending on the noise level present in the
specific band. Indeed, we have obtained better performance for
the specific bands when the ground-truth noise level matches
the input noise level map (M is fixed at noise level σ = 50
for all the bands).

In order to conduct the quantitative analysis, classification is
performed on the Indian Pines data set: 16 ground-truth classes
were used for testing the classification results obtained after

Fig. 10. Results obtained by different methods on the Indian Pines data
set (grayscale visualization using band 2). (a) Noisy image. (b) HSSNR.
(c) LRTA. (d) BM4D. (e) LRMR. (f) HSID-CNN. (g) Proposed.

applying the different denoising methods. The obtained results
are shown in Table III. In the second column, we report the
OA and kappa scores obtained with the original noisy image,
and in the subsequent columns, we show the OA and kappa
obtained for the HSI denoised with different methods.

On this data set, both the BM4D and the HSID-CNN
algorithms obtain good performance, with an OA of 83.97%
and 85.65%, respectively. Among all the compared methods,
the proposed HSI-SDeCNN obtains the highest improvement,
going from an OA of 75.96 (original noisy image) to an OA
of 95.58% (denoised image). As a result, from a quantitative
point of view, our method exhibits superior performance to
those obtained by the other methods on the Indian Pines data
set. This can be also appreciated in Fig. 11. In particular,
Fig. 11(a) shows the ground-truth, while Fig. 11(b) shows
the classification map obtained with the original noisy image.
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TABLE III

CLASSIFICATION RESULTS OBTAINED AFTER DENOISING THE INDIAN PINES IMAGE USING DIFFERENT METHODS

Fig. 11. Classification maps obtained on the Indian Pines scene after applying
different denoising methods. (a) GT. (b) Original. (c) HSSNR. (d) LRTA.
(e) BM4D. (f) LRMR. (g) HSID-CNN. (h) Proposed.

The subsequent maps are the results of the different methods.
It can be seen that our method produces a map that is less
fragmented and contains many correctly classified regions
that are misclassified with the images denoised by the other
methods.

B. University of Pavia Data Set

In the University of Pavia data set, the noise is mainly
present in the first bands. Fig. 12 shows the denoised
(grayscale) results after applying different methods to band
2. On the one hand, it is possible to see that the outputs
of the LRMR and HSSNR methods contain a large amount
of residual noise. On the other hand, LRTA and BM4D
present better denoising performance but introduce significant
blurring. HSID-CNN and the proposed HSI-SDeCNN pro-
vide good results, confirming superior denoising performance.
We emphasize that, for the Pavia data set, M is fixed at
a noise level of σ = 50 for all the bands. To provide a
quantitative analysis of this data set, classification experiments
have also been conducted. The classification task is performed
on nine classes, before and after denoising. Since the noise
is mainly present in the first bands, the classification task
has been performed only using the first 20 spectral channels.
The obtained results are shown in Table IV. It is possible

Fig. 12. Results for the University of Pavia data set (grayscale visualization
using band 2). (a) Noisy. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR.
(f) HSID-CNN. (g) Proposed.

to see that the proposed method outperforms all the other
methods. Specifically, the OA accuracy obtained with the orig-
inal image is 70.09%, while the OA obtained with the image
after denoising using the proposed HSI-SDeCNN is 91.74%.
Furthermore, our method exhibits superior performance in
terms of OA and kappa accuracy when compared to the other
considered methods. Notice that the improvements obtained in
this experiment are less significant than those obtained for the
Indian Pines data set. This is mainly due to the fact that we
are using only 20 bands from the 103 present in the University
of Pavia data set. The effectiveness of our HSI-SDeCNN
can be better appreciated in the classification maps shown
in Fig. 13, where one can see that the proposed method obtains
the most similar results to the ground-truth classification map
in Fig. 13(a).

C. Computational Efficiency

In order to evaluate the computational efficiency of the
proposed denoising algorithm, we compare the running time
of the proposed HSI-SDeCNN with that of the HSID-CNN,
which obtained the best results (in terms of running time)
among the state-of-the-art considered algorithms (see results
in [37]). The running time has been calculated for both exper-
iments on simulated and real data, using the same computing
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TABLE IV

CLASSIFICATION RESULTS OBTAINED AFTER DENOISING THE UNIVERSITY OF PAVIA IMAGE USING DIFFERENT METHODS

Fig. 13. Classification maps obtained by different methods for the University
of Pavia scene after applying different denoising methods. (a) Ground-truth
image. (b) Original image. (c) HSSNR. (d) LRTA. (e) BM4D. (f) LRMR.
(g) HSID-CNN. (h) Proposed.

TABLE V

AVERAGE RUNTIME (IN SECONDS) MEASURED FOR THE HSID-CNN AND

THE PROPOSED HSI-SDECNN METHODS

environment with MATLAB R2018b and a Laptop with GPU
GTX1050Ti. Also in this case, the results provided in Table V
have been averaged over ten runs. We can observe that our
method is more than two times faster than the HSID-CNN,
improving at the same time the denoising performance.

VI. CONCLUSION

We have presented a new learning-based method for HSI
denoising, called single denoising CNN (HSI-SDeCNN). This
method considers the spatial–spectral correlation present in
HSIs, taking as input a full data cube instead of a single band.
The main characteristics of this method are: a downsampling
layer that allows the network to be faster without losing
denoising performance, and a noise-level map that is used to
give as input to the network an estimation of the amount of
noise. The proposed method outperformed other mainstream
methods commonly adopted in HSI denoising on synthetic and
real data sets, with only one single trained model. In particular,
it exhibits superior performance both in terms of denoising

capability and computational efficiency. The performance of
the method depends on the input noise level map M , that
is, the only hyperparameter that needs to be tuned. This
parameter, as demonstrated from the results, is flexible in
handling different levels of noise.

As with any new approach, there are still some future
research avenues that can be further explored. Specifically,
the proposed network makes the denoising at only one level
for all the bands. Such a level is specified by the input noise-
level map. However, in HSIs, the noise generally differs from
one band to another. For this reason, a further improvement
of the method will focus on adapting the input noise level to
each specific band.
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