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Abstract— Advances in deep learning (DL) have allowed for the
development of more complex and powerful neural architectures.
The adoption of deep convolutional-based architectures with
residual learning [residual networks (ResNets)] has reached
the state-of-the-art performance in hyperspectral image (HSI)
classification. Traditionally, ResNets have been considered as
stacks of discrete layers, where each one obtains a hidden state
of the input data. This formulation must deal with very deep
networks, which suffer from an important data degradation as
they become deeper. Moreover, these complex models exhibit
significant requirements in terms of memory due to the amount of
parameters that need to be fine tuned. This leads to inadequate
generalization and loss of accuracy. In order to address these
issues, this article redesigns the ResNet as a continuous-time
evolving model, where hidden representations (or states) are
obtained with respect to time (understood as the depth of the
network) through the evaluation of an ordinary differential equa-
tion (ODE), which is combined with a deep neural architecture.
Our experimental results, conducted with four well-known HSI
data sets, indicate that redefining deep networks as continuous
systems through ODEs offers flexibility when processing and
classifying these kinds of remotely sensed data, achieving sig-
nificant performance even when a very few training samples are
available.

Index Terms— Deep learning (DL), hyperspectral images
(HSIs), ordinary differential equations (ODEs), residual
networks (ResNets).
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I. INTRODUCTION

REMOTE sensing techniques have been widely employed
for detecting, measuring, and monitoring the physical

behavior and/or characteristics of large areas of the earth
through the acquisition and measurement of radiation emitted
or reflected by the terrestrial materials that comprise the
observed surfaces, which are captured by specific sensors
located on airborne or spaceborne platforms [1]. The inter-
pretation of the obtained measurements can be beneficial to
human activity [2], [3]. There is a wide range of remote
sensing data, where each one exhibits different spatial and
spectral properties depending on the type of employed sensor
and measured radiation. Moreover, current earth observation
missions are already collecting an extremely large volume
of remotely sensed data from satellites and airborne sys-
tems [4]. Hyperspectral images (HSIs) are collected by passive
spectrometers that measure the reflected solar radiation from
the observed areas, creating huge data cubes comprised of
hundreds of narrow and continuous spectral wavelengths. As a
result, an HSI given by X ∈ R

n1×n2×nbands is comprised of
two spatial components that determine the image’s width and
height (n1 ×n2) and one spectral component that indicates the
number of channels or spectral bands (nbands). As a result, each
pixel of X can be interpreted as a detailed spectral signature or
spectral vector xi ∈ R

nbands = {xi,1, . . . , xi,nbands }, which allows
for an accurate characterization of the surface materials [5].
This has attracted the attention of many researchers who
employ HSIs into a wide range of applications, including
precision agriculture [6], environment and natural resources’
management [7], mineralogy [8], forestry [9], disaster moni-
toring [10], urban planning [11], and defense applications [12],
among others.

A large variety of algorithms have been developed to
process and extract useful information from HSI data cubes.
In this regard, HSI classification methods can greatly ben-
efit from the rich spectral information contained in each
pixel xi . In fact, the classification of these images aims
to assign a single category (or label) to each pixel in the
image. In mathematical fashion, the goal of a classifier is to
approximate a mapping function of the form f (·, θ), which
depends on parameter θ , to map the pixels in the original HSI
X ⊂ R

nsamples to those labels contained in a set of categories
Y ⊂ N, i.e., f : X → Y . In the particular case of HSI
classification, the procedure consists of mapping each pixel
xi in X ≡ {x1, . . . , xnsamples} (with nsamples = n1 · n2) to
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a unique numerical label of nclasses possible classes yi =
{1, . . . , nclasses} extracted from the set Y ≡ {y1, . . . , ynsamples},
creating pairs of {xi , yi }nsamples

i=1 for each spectral pixel.
Traditional HSI classification methods are based on the

analysis of the each pixel xi independently, without con-
sidering spatial information, for instance, unsupervised clus-
tering techniques, such as k-means [13], and supervised or
semisupervised methods, such as the widely used support
vector machine (SVM) [14] or multinomial logistic regression
(MLR) [15], among others [16], [17]. Artificial neural net-
works (ANNs) [18], [19] have acquired great popularity due
to their flexibility concerning learning modes (unsupervised,
supervised, and semisupervised) and available architectures
(shallow, deep, fully, or local connected). Moreover, ANNs
work as universal approximators [20], [21], being able to
extract representative features and to discover nonlinear rela-
tionships from the input data.

Advances in deep learning (DL) [22], [23] have allowed
for the implementation of deeper and more complex ANNs,
known as deep neural networks (DNNs). These networks are
comprised of groups of neurons organized into a hierarchy
of multiple nonlinear layers, which are stacked one by one.
As a result, DNNs are comprised of one input and one output
layer with several hidden layers in-between them. The original
data go through the hierarchy of layers, where a different
level of data representation is obtained at each layer. These
representations are comprised of highly expressive features
that encode complex patterns and nonlinear relationships in
the data. At the end of the network, highly abstract and
discriminative information is obtained, which can be employed
to enhance classification tasks. In the following, we briefly
review some recent DL works in the literature (focusing on
those based on convolutional and residual architectures for HSI
data classification), and then, we discuss some shortcomings
and limitations of these works and the solutions adopted in
this article.

A. Recent Trends in DL for HSI Classification

DNNs traditionally follow a biological neural model, imple-
menting a fully connected (FC) topology where all the neurons
in a layer are totally connected with all the neurons of the
previous and following layers, as in the multilayer perceptron
(MLP). In this way, each neuron applies a dot product between
the outputs of previous neurons and the connection weights,
simulating synaptic weights. The obtained result is filtered by
a threshold function, also known as nonlinear activation func-
tion, which encodes the nonlinearities of the data and triggers
(or not) the activation of a given neuron. In fact, the DNN
approaches adopt the same strategy as traditional pixelwise
classifiers. For HSI data, they take as input the spectral pixels
of the HSI data cube [18]. In this regard, spectral-based DNNs
are quite sensitive to variations in the spectral signatures.
It should be noted that HSI data are characterized by their
high intraclass variability and interclass similarity (due to per-
turbations and disturbances in the data collection process at the
spectrometer, atmospheric conditions, and so on). Also, HSI
data normally exhibit low spatial resolution, which means that

a single pixel often contains multiple materials, resulting in
mixed spectral signatures. These shortcomings, coupled with
the curse of dimensionality and the Hughes phenomenon [24]
(which establishes the need for a reasonable balance between
the number of training samples and the number of spectral
bands in order to ensure a reliable classification [25], [26]),
are important challenges to deploy the full potential of HSI
technology with traditional pixel-based DNN approaches.

A significant evolution in DL techniques was the adaptation
of biological visual cortex neurons into DNN architectures,
with the implementation of convolutional neural networks
(CNNs) [22]. Inspired by the local receptive field of such
visual cortex neurons (activated or not in the presence of
certain types of visual stimuli), CNN-based models rely on
the application of a sliding n-dimensional kernel on the input
data of each layer. This allows for the exploitation of the visual
properties of an image, learning features at certain positions
of such an image and applying these features as filters to
the rest of the image in order to obtain a feature-activation
map [27], [28]. In this sense, the contextualization provided
by the spatial components n1 × n2 of the HSI data cube
X can greatly reduce the variability of spectral samples by
interpreting the data surrounding the pixels as belonging to the
same class, which reinforces the information contained in the
target pixel, reducing also the well-known “salt and pepper”
noise of spectral classifiers.

CNN models exhibit excellent performance in HSI data
classification through the development of a wide range of
architectures from traditional spectral-based ones (CNN1D) to
spatial (CNN2D) and spectral–spatial (CNN3D) models. For
instance, Hu et al. [29] implemented a five-layer CNN1D to
classify HSI data in the spectral domain, and Yue et al. [30]
developed a CNN3D to classify HSI data taking into account
spectral–spatial information. Zhao and Du [31] exploited a
CNN2D model as a highly confident spatial feature extractor.
Chen et al. [32] reviewed CNN1D, CNN2D, and CNN3D
models for deep HSI feature extraction (FE) and classifica-
tion. In order to enhance the classification results, several
improvements have been added to the CNN architecture. For
instance, Yu et al. [33] implemented a three-layer CNN2D
model with 1 × 1 kernels inspired by the network-in-network
(NIN) model [34] in order to overcome the presence of highly
correlated bands in the HSI data cube. He et al. [35] combined
the information contained in HSI-extracted covariances with a
CNN2D model. Paoletti et al. [36] presented a faster end-to-
end CNN3D that improved the classification accuracy, taking
into account the full spectral signatures contained in HSI data.

Despite the aforementioned results, CNN models still face
certain limitations related to the intrinsic characteristics of
HSI data and the (high) number of parameters and the depth
of the network. In particular, CNNs need a large amount of
training data to properly adjust their weights [37]. They also
require some variability in the data in order to extract more
features [28]. Although HSI data often exhibit a wide variety
of samples, very limited labeled data are often available due
to their high cost, which, in the end, hampers the FE process
and leads to overadjustment (overfitting) in the convolutional
model’s parameters.
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In addition, the implementation of very deep CNN models
through the stacking of successive layers has proved to be
inefficient itself [38], since a significant degradation can be
observed in both the forward propagation of the data and
the backpropagation of the gradient signal through the layers
(vanishing gradient problem) [39], [40]. To overcome these
issues, the residual learning aims to facilitate data reusability
through identity functions implemented by skip or residual
connections. Residual networks (ResNets) [38] and other
residual-based architectures (such as highway networks [41],
DenseNets [42], or ResNets of Resnets (RoRs) [43]) have
emerged as the current state-of-the-art in image process-
ing [44], allowing for the development of highly complex and
deep architectures, using hundreds to thousands of layers [45].
These techniques, aimed at enhancing the propagation of data
through the network, have been successfully adopted in several
HSI classification works [46]–[48].

However, ResNets exhibit some shortcomings in terms of
architecture optimization. In fact, residual-based models for
HSI classification are quite sensitive to minor architectural
changes, in particular, the selection of an appropriate kernel
size has a significant impact on the final classification accuracy
due to the low spatial resolution of HSI data cubes [47].
In contrast, at certain levels of depth, adding more or less
layers to the network does not impact the classification result
significantly [48]. In turn, this obviously affects the number of
parameters that must be stored and trained. The understanding
of the optimal number of parameters required by a certain
architecture (the number of layers, kernel sizes, and so on) is
quite critical, but it is often hand-crafted and adjusted by trial
and error.

B. Rethinking the ResNet Model for HSI Classification

DNNs (in general) and ResNets (in particular) have been
interpreted as a discrete sequence of L stacked layers, where
each one applies its transformation to the input data until
reaching a final classification decision, which is performed by
the last layer. This implies that the ResNet model is evaluated
at fixed intervals of “time,” defined by the layer depth. Also,
assuming that each layer has the same number of neurons
nneurons (which can be interpreted as the kernel’s size in the
convolutional architecture), the number of trainable parameters
depends directly on L, so the complexity of the network (and
its memory consumption) grows linearly with the O(L) order,
which could have an impact on the model’s overfitting. Under
the same assumption, the computational time of the inference
stage also depends on L.

The aforementioned implications provide an idea of the
importance of the model’s depth. As a result, the selection of
L must be carefully done. In fact, the main goal of this paper
is focused on two important aspects: 1) checking the effects of
the depth when L → ∞ and 2) analyzing strategies to provide
the network with constant and low memory cost (in terms of
the number of parameters). In this context, the FE function
applied by each residual unit can be interpreted as the explicit
Euler discretization of a continuous-time transformation
[49], [50]. Following this interpretation, the entire ResNet

model can be described through an ordinary differential equa-
tion (ODE) [51], [52], whose evaluation at different times will
determine the model’s solution [53], [54].

With the aforementioned ideas in mind, the main contribu-
tion of this article is to redefine the traditional architecture
of the ResNet model (in the context of HSI data classifi-
cation) by means of a continuous-time vision using ODEs,
developing a residual-based DNN with a significantly reduced
number of trainable parameters (thus effectively dealing with
overfitting issues) and constant and low memory cost. These
are important advantages in the area of HSI classification.
More specifically, this article proposes, for the first time in the
literature, the implementation of a continuous-depth ResNet
with a parameterized spectral–spatial ODE in order to perform
HSI data classification.

The remainder of this article is organized as follows.
Section II introduces our newly developed model (called
hereinafter ODEnet). Section III validates the newly pro-
posed model by providing a detailed discussion of the results
obtained using four widely used HSI data sets. Finally,
Section IV concludes this article with some remarks and hints
at plausible future research lines.

II. METHODOLOGY

A. Residual Units as Discrete Steps of Blocks

DNN architectures are stacks of L hidden blocks [55]
F1–FL , where each one Fl is given by the following mapping
function:

X(l) = Fl(X(l−1), W(l), b(l)) (1)

where X(l−1) and X(l) are the input and output data, respec-
tively, and W(l) and b(l) are the weights and biases of the
lth mapping function Fl . In order to address the classification
problem f : X → Y , the DNN model assigns a classification
map Y ∈ R

nsamples to the given input X ∈ R
nsamples×nbands by

applying L sequential operations defined by (1). In this sense,
the classification function f (·, θ) can be reinterpreted as the
concatenation of the processing at each layer processing as
follows:

Y = f (X, θ) = F̂(FL(FL−1(· · · F1(X) · · · ))) (2)

where X is the original input data, Fl(·) is the mapping
function performed by the lth network’s block, and F̂(·) is
the final classification layer, while θ comprises the network’s
parameters [49]. In this regard, instead of considering the
classification mapping as a global problem, the DNN model
splits it into L mapping functions Fl , where the goal of the
classification is to learn the parameters of each Fl that better
minimize the convex loss function given by the following:

E = 1

nsamples

nsamples∑
i=1

� f (Xi , θ) − Xi �2 . (3)

If we focus on convolutional-based models, the data trans-
formation defined by (1) is tailored in an FE stage defined by
a kernel operation [36], which allows to easily combine the
spatial–contextual information with the spectral information.
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In this context, the CNN maintains the original 3-D data
structure, adding a lot of flexibility to the model and a natural
way to include the spectral–spatial information. Moreover,
the internal structure of the CNN’s layers and their operations
(based on local receptive fields) have promoted it as a highly
accurate feature extractor.

Two main parts can be observed in an end-to-end CNN
classifier network: 1) the FE stack, which obtains high-level
representations of the input data (also feature maps) and is
usually comprised of a hierarchy of convolutional, nonlinear,
and subsampling layers, among others and 2) the FC classifier,
which actually labels the data from the previously obtained
feature maps and is implemented as a standard MLP.

Focusing on the FE stack, it is usually adopted to implement
an architecture of several hierarchically stacked extraction and
detection stages, where the lth stage defines the lth mapping
function Fl , following the notation of (1). Moreover, each Fl

is usually comprised of: 1) the convolutional layer; 2) the
nonlinear layer; 3) the normalization layer; and 4) the pooling
layer, as (4) shows, although both the order and the type of
layers may vary from one CNN architecture to another (even
from one stage to another)

A(l) = (W(l) ∗k×k×q X(l−1)) + b(l) (4a)

Â(l) = A(l) − mean[A(l)]√
var[A(l)] + �

· γ + β (4b)

Ã(l) = H(Â(l)) (4c)

X(l) = Pk×k(Ã(l)). (4d)

The convolutional layer performs the basic FE task of the
model. The spectral–spatial convolutional layer of the Fl

mapping function is comprised of a group of K filters with
W(l) ∈ R

k×k×q weights and b(l) biases, being k × k × q
the local receptive field of the layer. In consequence, each
layer creates a linear kernel that slides (following a stride s)
and overlaps the input data, convolving (∗) its filters on local
patches of the data, as (4a) indicates. As a result, the obtained
output volume is comprised of K feature maps.

After the convolutional layer, it is common to include a
batch normalization layer, which imposes a Gaussian distrib-
ution on the obtained feature maps with the aim of preventing
the data degradation and vanishing gradient problems (mainly
due to the covariance shift that the data suffers). Equation (4b)
gives the regularization expression, where � is a parameter that
allows a certain numerical stability and γ and β are learnable
parameters.

Following the normalization layer, a nonlinear layer H(·)
defined by (4c) is introduced in order to extract the activation
maps from the convolutional output volume. In fact, this layer
embeds a nonlinear activation function, which encodes the
detector stage of the network [56], learning the nonlinear
representations and relationships inside the data. Many acti-
vation functions can be selected, such as the tanh, sigmoid,
or rectified linear unit (ReLU) [57], which allows a faster
training of the model due to its high computational efficiency.

Finally, the extraction and detection stage ends with the
pooling layer Pk×k(·) given by (4d), which performs a
downsampling strategy with the aim of reducing the spatial

Fig. 1. Graphical representation of the lth residual unit architecture, Fl ,
comprised of two FE and detection stages. Each stage is comprised of
normalization, nonlinear, and convolutional layers. The application of these
stages gives, as a result, the output volume G(X(l−1)), to which an identity
mapping is added at the end of the residual unit, obtaining the final residual
output volume X(l) = X(l−1) + G(X(l−1)).

dimensions of the output volume by applying, for instance,
a max, average, or sum operation on the spatial receptive field
of dimensions k × k.

Based on the CNN architecture, the success of the ResNet
model lies in the skip and residual connections, in which
grouped operation layers (i.e., convolutional, pooling, and
normalizing layers) and nonlinear activation functions com-
prise of the basic blocks for data mapping [47], as shown
in Fig. 1. These residual units allow for the development of
deeper architectures, where the inputs and outputs of each
unit are connected through a residual connection, performing
an additional identity mapping that allows to propagate the
information from previous blocks to the rest of the network.
In this context, for the lth residual unit, the FE and detection
stages given by (4) can be reformulated as follows:

A(l) = X(l−1) + G(W(l), X(l−1),B(l)) (5a)

X(l) = H(A(l)) (5b)

where G(·) comprises all the operations applied over the
residual unit’s input data, i.e., all the convolutions, poolings,
normalizations, and activations applied over X(l), being W(l)

and B(l) the weights and biases of the layers involved in the
residual block, respectively. Moreover, the additive residual
mapping function added to G(·) allows to recycle the features
obtained at the previous level of abstraction.

Following (2), the ResNet defines each mapping function Fl

through (5). In this context, the neural model can be interpreted
as a discrete sequence of L hidden units or mapping functions,
dividing the classification process into L steps, so that each
Fl defines a hidden state of the process, which becomes more
manageable, with simple and detailed steps that allow for a
more accurate final classification. However, this implies that
the quality of the model depends on its trainable parameters,
and the number of trainable parameters depends directly on L.
This has two main implications. On the one hand, the memory
consumption grows linearly [with O(L) order] and there is
an increment of training data that the model must assume in
order to properly learn the network’s parameters, avoiding the
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overfitting problem. On the other hand, although the residual
connections alleviate the aforementioned problem, each new
unit that is added to the model introduces a small error
[38], [58], which may hinder the model’s overall performance.
These issues are particularly critical when dealing with highly
variable HSI data sets.

B. Residual Units as Discrete Steps of ODEs

Our goal is to develop a residual model with constant
and low memory cost through a significant reduction of
the number of trainable parameters. We follow the premise
of traditional optimization models: solving a lot of small
steps is often better than solving fewer and more complex
ones [50]. In this sense and following (2), we propose to
implement an ResNet model for HSI data classification in
which the forward problem is comprised of infinitesimal steps,
i.e., L → ∞ [54]. Each of these steps performs (5),
which describes an explicit Euler discretization step of the
ODE [51], [52]. Below, the mathematical relationship between
ResNet models and ODEs is described in detail.

We focus on the first-order ODE expressions. Following
Euler’s solving method, any first-order ODE can be expressed
as an initial value problem (IVP) of the form:

dz(t)
dt

= f (t, z(t), θ), with z(t0) = z0 (6)

where ti is an independent variable defined in terms of time
in an observation interval {0, ..., T }, f (z(t), t, θ) is a known
and continuous function with parameter θ , and z(t) is the
unknown function that must be approximated, with initial state
z0 at time t0. In fact, the goal of any ODE function is to
recover the closest and most accurate value zi of the unknown
function z(ti ) at each observation point ti .

From a geometric point of view, knowing z(t0) = z0,
an approximation of z(ti ) = zi in any step ti can be performed
by drawing the tangent line from previous-known points as
follows:

z1 ≈ z0 + f (t0, z0, θ)(t1 − t0) (7a)

zi ≈ zi−1 + f (ti−1, zi−1, θ)(ti − ti−1) (7b)

zT ≈ zT −1 + f (tT −1, zT −1, θ)(tT − tT −1). (7c)

Generalizing the discrete steps defined above, it can be stated
that any z(ti ) can be approximated by (7b). Assuming that the
i th observation point is connected to the first one (following
the relation ti = t0 + α · i , where α is a step-size), the Euler
discretization method claims that each point ti is related to
the immediately preceding one, ti−1, through the step-size α
as follows: ti = ti−1 + α. Including this relationship in (7b),
Euler’s method gives a solution for z(ti ) as

zi = zi−1 + f (ti−1, zi−1, θ) · (��ti−1 + α −��ti−1) (8a)

zi = zi−1 + α · f (ti−1, zi−1, θ). (8b)

At this point, it is easy to observe the relationship between
the ResNet model and the first-order ODE. Focusing on (5),
we can simplify it into a more condensed form

X(l) = X(l−1) + G(X(l−1), θl). (9)

The similarities between (8b) and (9) are evident. In fact,
(9) defines an explicit Euler discretization step of the first-
order ODE, where the step size is set to α = 1 and the known
function is implemented by the extraction and detection
stages G(·) of the residual unit, being parameterized by the
weights and biases of the layers that comprise the residual
unit θl = (W(l),B(l)). In other words, the ODE function is,
in fact, a CNN.

Following this intuition, we can replace the discrete
block-by-block performance of a ResNet model by a
continuous-time ODE function. In particular, we assume a
residual model with L → ∞ equal residual units. In this
sense, each mapping function Fl has to perform the same
extraction and detection stages in G(·), so each unit has the
same number of parameters θ and works in the same feature
space F1, . . . , FL ∈ R

n̂1×n̂2×n̂3 , where n̂1 × n̂2 × n̂3 are the
spatial–spectral dimensions of the feature maps.

In this way, the successive transformations given by (2),
F1, . . . , FL , can be interpreted as the continuous mapping
function F(t) evaluated at different times (with a relationship
between layers and time). So, at the i th observation time,
we can obtain F(ti ) = Xi . As a result, the residual model
can be reformulated as the ODE in (10b), which gives the
discretization step of Euler’s method and the expression of
the first-order ODE

Xi = Xi−1 + G(ti−1, Xi−1, θ) (10a)

where
dF(t)

dt
= G(t, F(t), θ), with F(t0) = X0. (10b)

As it can be observed, the ODE is implemented by the
neural network defined by G(·) and parameterized by θ .

C. Proposed ODEnet for HSI Classification

We propose, for the first time in the literature, to reinterpret
the ResNet model (for HSI data classification) as a continuous
transformation given by the first-order ODE described in
(10b). Fig. 2 gives a general overview of the proposed ODEnet,
which receives as input the HSI data cube with dimensions
X ∈ R

d×d×nbands . In fact, the model is fed with hyperspectral
patches cropped from the original HSI cube, comprised of
d × d pixels and nbands spectral bands, where the label
corresponds to the central pixel of the patch. Also, in order
to take advantage of border pixels, a mechanism for mirroring
the image edges has been implemented [36].

The proposed network architecture is divided into the FE
layers and the final classification layers. Focusing on the FE
layers, they are grouped into three categories: 1) FE head;
2) FE body; and 3) FE tail. The FE head performs a downsam-
pling of the data, reducing noise, and cleaning the information
contained in the input. It is comprised of a convolutional layer
F1 and a residual unit F2. F1 prepares the input data, extracting
the initial features from the HSI cube, which are fundamental
to the performance of the rest of the layers. During the training
process, these features will become more and more robust and
discriminative, being decisive for the final classification. F2
has been implemented following the preactivation architecture
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Fig. 2. Architecture of the proposed ODEnet for HSI data classification.
The feature extractor part is comprised of three well-differentiated parts: 1) a
preprocessing step that filters the spatial–spectral noise and extracts low-level
feature representations; 2) the ODE solver that evaluates the function G(·)
defined by a neural network; and 3) the ODE solver’s output, after being
refined, is employed to perform the final classification, implemented by two
FC layers.

proposed in [45], performing data downsampling, and it is
comprised of two FE and detection stages with normalization,
nonlinear, and convolutional layers, adding a convolutional
layer on the skip connection to maintain the data shape.

The obtained features are sent to the FE body, which is
implemented by a continuous-time ResNet. In this context,
the ODE implemented by (10b) has been parameterized by
a CNN model. As Fig. 2 shows, this model follows the
preactivation architecture [45] and has three stages, where
each one is comprised of normalization, nonlinear, and con-
volutional layers (stages 1 and 2), and a normalization layer
(stage 3). This ODE is solved from some initial time t0 to
some ending time tT , creating an integration time interval
[0, T ]. Furthermore, during each forward pass, the traditional
discrete-layer execution of the model is eventually replaced
by L̂ evaluations of (10b), performed by a black-box solver in
the interval [0, T ], which receives as the initial condition X0
the output of F2, the known function G(·) and its parameters
θ , in addition to the integration time interval, and a tolerance
threshold of the estimated error, tol

F(tT ) = XT = ODEsolver(X0,G, θ, [t0, tT ], tol). (11)

Equation (11) can be performed by any off-the-shelf ODE
solver. There is a great variety of methods for this purpose,
grouped in different categories depending on their internal
characteristics and working modes [59], being some of the
methods framed within the most well-known Runge–Kutta
family, which are as follows.

1) Forward Euler: This is the most popular numerical
explicit method for solving the first-order ODEs. It is
also the simplest method to implement, where the new
states are obtained through previously known ones by
the intersection of tangent lines, as (8) shows. Given
the first-order ODE of (6) and using α as the step size,
the approximation error of Euler’s discretization method
will be proportional to O(α2).

2) Explicit Midpoint Method also Known as the Modified
Euler method: Given (6), the evaluations are made

at α/2, so this method determines the value z(ti ) = zi

as the following approximation:

zi = zi−1 + α · f
(

ti−1 + α

2
, zi−1 + α

2
· k1

)
(13a)

k1 = f (ti−1, zi−1) (13b)

This method reduces the estimation error when Euler’s
step size is too high and the tangent needs to be
elongated to find the intersection point.

3) Fourth-Order Runge–Kutta (RK4) Method: This is the
most widely used method of the Runge–Kutta family.
Inspired by the midpoint method, the basic idea is that,
given two equidistant points ti = ti−1 + α, the function
z(ti ) = zi can be approximated as the sum of the
previously known value and the weighted average of s
slopes [60]

zi = zi−1 +
s∑

n=1

bn, kn (14a)

k1 = α f (ti−1, zi−1) (14b)

kn = α f

(
ti−1 + cnα, zi−1 +

n−1∑
n̂=1

an,n̂kn̂

)
(14c)

where an,n̂ , bn , and cn are weighted coefficients. In this
sense, given (6), the RK4 method determines the value
at ti as an approximation of the previously known zi−1
and the weighted average of four increments: (k1+2k2+
2k3+k4)/6, which are calculated on certain points of the
slope defined by f (z(t), t, θ), in particular, the starting,
ending, and midpoints [61]

zi = zi−1 · 1

6
(k1 + 2 · k2 + 2 · k3 + k4) (15a)

k1 = α f (ti−1, zi−1) (15b)

k2 = α f

(
ti−1 + α

2
, zi−1 + k1

2

)
(15c)

k3 = α f

(
ti−1 + α

2
, zi−1 + k2

2

)
(15d)

k4 = α f (ti−1 + α, zi−1 + k3) . (15e)

Following (15), the approximation error is proportional
to O(α4), being more precise than the two previous
methods.

4) Dormand-Prince Method (DOPRI5): This is an explicit
and adaptive Runge–Kutta method to calculate the
fourth- and fifth-order solutions. In fact, following (14),
it calculates seven slopes: k1–k7, which are employed
to calculate two approximations of z(ti ) = zi by two
different linear combinations. Equation (12a), as shown
at the bottom of the next page, gives the first approxi-
mation, with O(α4) order, while (12b) gives the second
approximation, with O(α5) order. An interesting aspect
of the DOPRI5 solver is its ability to adapt the step size
α to keep the estimated error |ẑi −zi | below a predefined
threshold. The updating of the optimal step size αopt is
obtained as

s =
(

tol · α

2|ẑi − zi |
) 1

5

(16a)

αopt = s · α (16b)
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TABLE I

PROPOSED NETWORK TOPOLOGY

where tol defines the tolerance level, which provides
robustness and reliability to the model.

In addition to obtaining the corresponding state XT = F(tT )
at tT (forward-propagation), the ODEsolver should optimize
the network’s parameters associated with the differential equa-
tion G(t, F(t), θ) by backpropagating the internal error signal
Eode(·) defined by the following expression:

Eode(F(tT )) = E

(
F(t0) +

∫ tT

t0
G(t, F(t), θ)dt

)
. (17)

This optimization can be implemented by two methods:
1) traditional integration through a Runge–Kutta integrator,
for instance, or 2) employing the adjoint method [54], [62].
The first one directly integrates the operations of the forward
pass and still presents an important memory requirement in
the sense that, for L̂ evaluations, the memory cost grows to
the order of O(L̂). However, the adjoint method allows to
optimize the parameters of G(·) while significantly reducing
their management, keeping constant the memory cost in the
order O(1) [54].

Finally, the FE-layers end with the FE tail, which receives
XT , the estimated output of the ODEsolver at evaluation
time tT , and performs a final processing. This entails an
FE and detection stages, denoted as F3, which comprises
normalization, nonlinear, and average pooling layers. The
obtained feature maps are then reshaped and sent to the
classifier, which has been implemented as an MLP with two
FC layers: F4 and F5, where the last one produces the final
classification.

Table I gives the topology details of the proposed ODEnet.
Moreover, our ODEnet model has been trained by the sto-
chastic gradient descend (SGD) optimizer to minimize the
classification loss given by (3), with input patches of 11 × 11,
using 160 epochs and 0.1 as the learning rate, taking into
account a momentum of 0.9 and learning rate decay, and a
batch size of 128, while the ODEsolver is implemented via
the DOPRI5 solver with a tolerance fixed to tol = 1e − 3 and
an integration time interval of [0, 1], which directly controls
the number of evaluations L̂ of the model by obtaining the
optimal step size α.

zi = zi−1 + 35k1

384
+��0k2 + 500k3

1113

125k4

192
− 2187k5

6784
+ 11k6

84
+��0k7 (12a)

ẑi = zi−1 + 5179k1

57600
+��0k2 + 7571k3

16695

393k4

640
− 92097k5

339200
+ 187k6

2100
+ k7

40
(12b)

k1 = α f (ti−1, zi−1) (12c)

k2 = α f

(
ti−1 + α

5
, zi−1 + k1

5

)
(12d)

k3 = α f

(
ti−1 + 3α

10
, zi−1 + 3k1

40
+ 9k2

40

)
(12e)

k4 = α f

(
ti−1 + 4α

5
, zi−1 + 44k1

45
− 56k2

15
+ 32k3

9

)
(12f)

k5 = α f

(
ti−1 + 8α

9
, zi−1 + 19372k1

6561
− 25360k2

2187
+ 64448k3

6561
− 212k4

729

)
(12g)

k6 = α f

(
ti−1 + α, zi−1 + 9017k1

3168
− 355k2

33
− 46732k3

5247
+ 49k4

176
− 5103k5

18656

)
(12h)

k7 = α f

(
ti−1 + α, zi−1 + 35k1

384
+��0k2 + 500k3

1113

125k4

192
− 2187k5

6784
+ 11k6

84

)
(12i)
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Fig. 3. Number of available labeled samples in the IP, UP, SV, and KSC HSI data sets.

III. EXPERIMENTAL RESULTS

A. Experimental Environment

In order to study the performance of the proposed ODEnet
for HSI classification, an implementation has been developed
and tested on a hardware environment with a sixth-generation
Intel Core i7-6700 K processor with 8M of Cache and up
to 4.20 GHz (four cores/eight-way multitask processing),
installed over an ASUS Z170 pro-gaming motherboard. The
available memory is 40 GB of DDR4 RAM with serial speed
of 2400 MHz and a Toshiba DT01ACA HDD with 7200 RPM
and 2 TB of storage capacity. Also, a graphic processing
unit (GPU) NVIDIA GeForce GTX 1080 with 8-GB GDDR5X
of video memory and 10 Gb/s of memory frequency is
available. In order to provide an efficient implementation,
the proposed model has been parallelized over the GPU using
CUDA 9.0 and cuDNN 7.1.1 language over the Pytorch
framework, with Ubuntu 18.04.1 × 64 as the operating system.

B. Hyperspectral Data Sets

Fig. 3 presents the four real HSI data sets that have
been considered in our experiments: Indian Pines (IP), Sali-
nas Valley (SV), and Kennedy Space Center (KSC) scenes,
acquired by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor [5], and the University of Pavia (UP)
scene, captured by the Reflective Optics System Imaging

Spectrometer (ROSIS) sensor [63]. A detailed description of
these images is provided in the following.

1) The IP scene comprises an area with different agri-
cultural fields in Northwestern Indiana, USA, imaged
during a flying campaign of the AVIRIS sensor in 1992.
The scene contains 145 × 145 samples, where each one
comprises 20 m, and the spectral information consists
of 200 bands in the wavelength range from 0.4 to
2.5 μm, after removing 24 noisy and corrupted bands.
As it can be observed in Fig. 3, the ground truth of the
IP scene contains a total of 16 different classes.

2) The UP image was acquired in 2001 by the ROSIS
sensor over the UP, Northern Italy, capturing an urban
area of 610 × 340 pixels, where each one comprises
1.3 m, and with spectral (103 bands, after elimination
of noisy and corrupted bands) in the wavelength range
from 0.43 to 0.86 μm. The number of different classes
contained in the UP scene is nine.

3) The SV image was captured during a flying campaign
of the AVIRIS sensor in 1998 over the agricultural
area described as SV in CA, USA. The data com-
prise 512 × 217 pixels with the spatial resolution of
3.7 m/pixel and 200 spectral bands in the range from
0.4 to 2.5 μm (200 bands, after elimination of the
noisiest bands). The available ground truth for the SV
scene contains 16 classes.
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4) Finally, the KSC scene was also gathered by the AVIRIS
instrument in 1996 over the KSC in FL, USA. In this
scene, 512 × 614 pixels were obtained with the spatial
resolution of 20 m/pixel. The data comprises 176 spec-
tral bands in the range from 0.4 to 2.5 μm after the
removal of noisy bands. The available ground truth for
this scene comprises 13 different classes.

C. Experimental Setting

To evaluate the classification performance of the proposed
ODEnet for HSI classification, three widely used quantitative
metrics have been considered: the overall accuracy (OA),
average accuracy (AA), and Kappa coefficient. Moreover,
the number of model’s parameters and execution times has
also been measured to determine the volume of data to be
trained and the computational cost. In this regard, with the aim
of providing a complete and detailed experimentation, several
experiments have been carried out, which are as follows.

1) Our first experiment evaluates the performance of the
proposed ODEnet by implementing it with different
ODEsolvers, in particular, forward Euler (EULER),
explicit midpoint (MIDPOINT), RK4, and DOPRI5. For
this experiment, the IP data set has been considered,
selecting randomly 10% of the available labeled samples
for training and using the remaining 90% of the samples
for testing, setting the tolerance threshold to tol = 1e−3.
Each experiment has been executed ten times, and the
average and standard deviations have been reported.

2) Our second experiment focuses on the DOPRI5 solver
due to its ability to adapt the step size α, adapting,
in turn, the number of evaluations L̂ contained in the
defined integration time interval [t0, tT ] to the com-
plexity of the function, as opposed to the EULER,
MIDPOINT, and RK4 methods that set a fixed size
for α, making the same number of evaluations in each
step. In this regard, our second experiment analyzes the
behavior of the DOPRI5 solver with different tolerance
thresholds, in particular: tol = {1e − 1, 1e − 2, 1e − 3
1e − 4, 1e − 5}. For this purpose, the OA values,
the number of evaluations during the forward and back-
ward steps, and the training execution times have been
measured. Again, in this experiment, we randomly select
10% of the available labeled samples of the IP data set
for training and use the remaining 90% for testing. Each
experiment is executed ten times and the average and
standard deviations are reported.

3) Once the model’s behavior has been evaluated with
different solvers and tolerance levels, our third exper-
iment performs several comparisons between the pro-
posed ODEnet and the traditional ResNet model for
spectral–spatial HSI data classification. In this context,
this experiment compares the robustness of the models,
analyzing their performance based on the amount of
available training data, the number of parameters used
by each model, and the evolution of the accuracy in
each epoch. For a fair comparison, the ResNet has been
implemented in the same way as the ODEnet, using the

topology in Table I, and changing the ODEsolver by six
residual units comprised of exactly the same stages as
the proposed ODEnet’s FE body, but adding the corre-
sponding residual connections. Moreover, the proposed
ODEnet has been implemented with the DOPRI5 solver,
employing Runge–Kutta integration and adjoint methods
and a tolerance threshold of 1e − 3. These models have
been tested with all the available scenes. For the IP
and KSC scenes, we have randomly selected 5%, 10%,
and 15% of the available labeled samples for training
and used the remaining samples for testing. The fact
that we consider larger training percentages for these
two images is due to the low spatial resolution and
highly mixed nature of these scenes, which exhibit high
intraclass variability. In turn, for the UP and SV scenes
(which exhibit much larger spatial resolution), we have
randomly selected 1%, 5%, and 10% of the available
labeled samples for training, using the remaining sam-
ples for testing. In all the cases, we have executed
each experiment ten times and the average and standard
deviations are reported.

4) The fourth experiment compares the behavior of the
proposed ODEnet models and the ResNet depending on
different network configurations, in particular, the spatial
windows’ size of the network’s input data and the depth
of the convolutional filters. In this sense, the proposed
models have been implemented with DOPRI5 during
the forward pass, while employing both Runge–Kutta
integrator and the adjoint method during the backward
step. For each experiment, the 10% of IP and KSC and
the 5% of UP and SV data sets have been considered to
perform the training of the models.
Regarding the first experiment, it compares the perfor-
mance of the neural models when different amounts of
spatial information confirm the network’s input data.
In this context, different window sizes have been con-
sidered, in particular input patches of 5 × 5, 7 × 7,
9 × 9, 11 × 11, 13 × 13, and 15 × 15 pixels have been
tested. Separately, the second experiment compares the
networks’ behavior when the number of convolutional
filters grows. In this regard, convolutional layers have
been implemented with 8, 16, 32, 64, and 128 filters.

5) Our last experiment conducts a comparison of the pro-
posed ODEnet with other widely used HSI classifiers.
In this context, eight different classification methods
have been selected to conduct the experimental valida-
tion. Specifically, three pixelwise classifiers (MLR, SVM
with radial basis function kernel, and MLP), one deep
spatial classifier (CNN2D), and three spectral–spatial
deep architectures (CNN3D, ResNet, and the proposed
ODEnet) have been considered. In this experiment,
we have randomly selected 15% of the available labeled
data from the IP and KSC scenes and used the remaining
85% of the labeled data for testing. Considering the
higher spatial resolution of the UP and SV scenes,
we have randomly selected 10% of the available labeled
samples for these scenes and used the remaining 90%
for testing. As in the previous experiments, we repeated
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Fig. 4. OA values (and corresponding standard deviations) obtained by the
proposed method (implemented with four different solvers with Runge–Kutta
integration and adjoint methods) for the IP scene.

each experiment ten times and report the average and
standard deviations. Moreover, for the spatial (CNN2D)
and the spectral–spatial (CNN3D, ResNet, and ODEnet)
methods, the original HSI scene has been cropped into
patches of 11×11. In the case of the CNN2D, principal
component analysis (PCA) has been used to reduce
the number of spectral bands to a single principal
component. All the hyperparameters of the considered
methods have been optimally fixed to obtain the best
possible performance for each method.

D. Experiment 1: Testing Different ODEsolvers

The performance of the proposed ODEnet depends on
two main aspects: 1) the solver that performs the forward
evaluation and 2) the backpropagation method that implements
the reverse-mode differentiation. In this experiment, the fixed-
α solvers: EULER, MIDPOINT, and RK4, and the adaptive
solver: DOPRI5 have been compared using the IP data set,
testing each one with Runge–Kutta integration (simply referred
to ODEnet hereinafter) and the adjoint method (ODEnetAdj
hereinafter).

Fig. 4 gives the obtained OA results and the standard
deviations for each considered model. As a general comment,
it should be noted that all methods achieve an OA greater
than 94% with small differences between them. Specifically,
the difference between the implementation of each solver with
Runge–Kutta integration and adjoint method is very small,
achieving very similar results.

If we compare the fixed-α solvers (EULER, MIDPOINT,
and RK4) with the adaptive DOPRI5 solver, it can be observed
that DOPRI5 reaches the best OA values for both back-
propagation methods, Runge–Kutta integration, and adjoint,
exceeding 95% OA with very low standard deviation, due to
its capability of adapting the evaluations to the problem’s com-
plexity. Furthermore, MIDPOINT and RK4 exhibit the worse
OA scores when implemented using Runge–Kutta integration
and adjoint methods, respectively. In particular, the MID-
POINT method implemented with Runge–Kutta integration
exhibits the highest standard deviation, because the adopted
approximation strategy performed by calculating the midpoint

of the slope is not the most appropriate for complex data such
as HSI scenes.

E. Experiment 2: Testing Different Tolerance Thresholds for
DOPRI5 Solver

The DOPRI5 solver is able to adapt the step size α that
controls the number of evaluation points (L̂) carried out
inside the integration time interval [t0, tT ], providing a flexible
mechanism to adapt the ODE resolution to the complexity of
the considered HSI data. In this sense, five different values for
the tolerance threshold have been considered: {1e − 1, 1e − 2,
1e − 3 1e − 4, 1e − 5}.

Fig. 5 shows the obtained results, comparing the obtained
OA values [see Fig. 5(a)], the training runtimes [see Fig. 5(b)],
and the number of evaluations performed during the forward
and backward steps (for each tolerance value) [see Fig. 5(c)].
If we focus on Fig. 5(a), it can be observed that the tolerance
threshold does not have a relevant impact on the OA values
in the sense that the differences are very small and the slight
variations are mainly due to the random procedure used for
the selection of training samples.

However, if we focus on Fig. 5(b), it can be clearly
observed that, for lower tolerances, the execution times grad-
ually increase, being the implementations with DOPRI5 and
adjoint method the slowest ones. This is due to the number
of evaluations L̂ that need to be carried out both in the
forward evaluations and the backward propagation. To further
investigate this issue, Fig. 5(c) focuses on the DOPRI5 solver
implementation with the adjoint method. In general, the num-
ber of forward and backward evaluations, in this case, is high
in the early epochs with the aim of adjusting them to minimize
the approximation error, descending abruptly until the number
becomes stable in subsequent epochs. In addition, for lower
tolerances, it can be observed that the number of evaluations is
higher than the tolerance values of 1e−1 and 1e−2, where the
difference is minimal. With the aforementioned observations in
mind, we consider a tolerance of 1e−3 as a good choice, in the
sense that it provides a good balance between performance
and training times, together with a sufficiently high number
of evaluations.

F. Experiment 3: Comparing ODEnet With ResNet

In this experiment, we illustrate the benefit of implementing
a ResNet-inspired model as a continuous function defined
by an ODE. Fig. 6 shows the OA evolution of the pro-
posed ODEnet when different amounts of training samples
are available. In general, the proposed method, implemented
either with DOPRI5 and Runge–Kutta integrator (ODEnet) or
with the adjoint method (ODEnetAdj), exhibits the best OA
results for all the considered HSI scenes, regardless of the
training percentage employed. The differences between our
ODEnet/ODEnetAdj models and the ResNet become particu-
larly evident when a very few training samples are available
with the proposed models exhibiting the most robust results.
Again, the observable differences between the Runge–Kutta
integrator and the adjoint method are quite small, being the
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Fig. 5. Performance of ODEnet (on the IP scene) with the DOPRI5 solver, using Runge–Kutta integration and adjoint methods, considering different tolerance
values. Specifically, we analyze the impact on (a) OA, (b) training runtimes, and (c) number of evaluations per epoch during the forward and backward steps
of the DOPRI5 solver implemented with the adjoint method.

Fig. 6. Evolution of the OA reached by ResNet (blue), the proposed ODEnet with the DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green), considering different amounts of training data. We report the results obtained for (a) IP, (b) UP,
(c) SV, and (d) KSC scenes.

Fig. 7. Evolution of the OA reached by ResNet (blue), the proposed ODEnet with the DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green) at different epochs. We report the results obtained for (a) IP, (b) UP, (c) SV, and (d) KSC scenes.

adjoint method better for KSC and SV scenes with low training
percentages.

The aforementioned results clearly illustrate the impact that
the overfitting of learnable parameters has on the ResNet
model, which needs more training data to achieve the same
performance as our ODEnet models. Moreover, Fig. 7 shows
that this overfitting problem happens at early epochs of the
classifiers. Specifically, it can be observed in this figure how
the OA obtained by ODEnet increases faster than that achieved
by ResNet in the earliest epochs, in particular when complex
scenes (such as IP and KSC) are classified.

These observed benefits confirm the following introspec-
tions: the ability of the DOPRI5 solver to adapt the model’s
learning to the complexity of the problem and the significant
reduction that can be achieved in terms of the required number
of parameters. The latter important benefit is quantitatively

TABLE II

NUMBER OF TRAINABLE PARAMETERS FOR THE STANDARD RESNET

MODEL AND THE PROPOSED METHOD IMPLEMENTED WITH DOPRI5
SOLVER AND RUNGE–KUTTA INTEGRATION (ODENET)

AND WITH THE ADJOINT METHOD (ODENETADJ)

measured in Table II, where the number of required model
parameters is displayed for each HSI data set. Specifically,
the proposed ODEnet and ODEnetAdj models are able to
overcome the performance of the traditional ResNet model by
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Fig. 8. Evolution of the OA reached by ResNet (blue), the proposed ODEnet the with DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green), considering different spatial window sizes. We report the results obtained for (a) IP, (b) UP,
(c) SV, and (d) KSC scenes.

Fig. 9. Evolution of the OA reached by ResNet (blue), the proposed ODEnet with the DOPRI5 solver and Runge–Kutta integration (orange), and the proposed
ODEnet with the DOPRI5 solver and adjoint method (green), considering different numbers of filters in each block. We report the results obtained for (a) IP,
(b) UP, (c) SV, and (d) KSC scenes.

Fig. 10. Classification maps obtained for the IP scene by different classifiers (see Table III). Note that the overall classification accuracies are shown in
brackets and the best result is highlighted in bold font. (a) MLR (78.19%). (b) SVM (83.63%). (c) MLP (84.03%). (d) CNN2D (87.16%). (e) CNN3D
(95.45%). (f) ResNet (96.55%). (g) ODEnet (97.61%). (h) ODEnetAdj (97.55%).

Fig. 11. Classification maps obtained for the UP scene by different classifiers (see Table IV). Note that the overall classification accuracies are shown
in brackets and the best result is highlighted in bold font. (a) MLR (89.89%). (b) SVM (94.40%). (c) MLP (94.39%). (d) CNN2D (96.02%). (e) CNN3D
(99.02%). (f) ResNet (99.54%). (g) ODEnet (99.67%). (h) ODEnetAdj (99.69%).

using less than half of its training parameters, avoiding quite
effectively the overfitting problem.

G. Experiment 4: Testing Different Network Configurations

In this experiment, we report the results obtained by
the proposed ODEnet considering different configurations of
the model, in particular, the initial amount of information
employed by the ODEnet, ODEnetAdj, and ResNet by testing

different spatial sizes of the models’ input data patch, and the
number of features extracted and processed by the convolu-
tional layers.

On the one hand, Fig. 8 shows the obtained results in terms
of OA considering input patches comprised of 5 × 5, 7 × 7,
9×9, 11×11, 13×13, and 15×15 pixels. As we can observe,
the proposed models exhibit very similar behaviors, being able
to outperform the accuracy reached by the ResNet in every
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Fig. 12. Classification maps obtained for the SV scene by different classifiers (see Table V). Note that the overall classification accuracies are shown
in brackets and the best result is highlighted in bold font. (a) MLR (92.37%). (b) SVM (93.65%). (c) MLP (93.15%). (d) CNN2D (95.27%). (e) CNN3D
(98.45%). (f) ResNet (99.28%). (g) ODEnet (99.42%). (h) ODEnetAdj (99.41%).

Fig. 13. Classification maps obtained for the KSC scene by different classifiers (see Table VI). Note that the overall classification accuracies are shown
in brackets and the best result is highlighted in bold font. (a) MLR (92.74%). (b) SVM (92.92%). (c) MLP (90.22%). (d) CNN2D (66.04%). (e) CNN3D
(98.10%). (f) ResNet (98.39%). (g) ODEnet (99.24%). (h) ODEnetAdj (99.03%).

TABLE III

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE IP DATA SET, USING 15% OF THE
AVAILABLE LABELED DATA FOR TRAINING AND 11 × 11 INPUT SPATIAL PATCH SIZE

scene, in particular when the spatial windows are very small.
Moreover, the improvement in the OA’s values increases as the
spatial windows’ size increases. However, while the difference,
in terms of accuracy, between small spatial windows is very
pronounced (for instance, between windows of 5 × 5 and
9 × 9 pixels, there are approximately ten percentage points
of improvement in IP and KSC and four percentage points
in UP and SV), between bigger windows, the difference is
noticeably smaller (for instance, between windows of 11 × 11
and 15 × 15). In this sense, as the amount of information

to be processed increases with the dimensions of the input
data patch, increasing also both memory requirements and
computation times, we consider paths of 11 × 11 pixels as an
optimal input data size, with a good ratio between performance
and computing time.

On the other hand, Fig. 9 shows the obtained results in
terms of OA too, considering input patches of 11 × 11 and
convolutional layers with 8, 16, 32, 64, and 128 filters.
As we can observe for each data set, the OA increases
its value as more filters are added. In particular, the best
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TABLE IV

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE UP DATA SET, USING 10% OF THE
AVAILABLE LABELED DATA FOR TRAINING AND 11 × 11 INPUT SPATIAL PATCH SIZE

TABLE V

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE SV DATA SET, USING 10% OF THE

AVAILABLE LABELED DATA FOR TRAINING AND 11 × 11 INPUT SPATIAL PATCH SIZE

OA is reached with 64 filters, remaining quite similar with
128 filters. Actually, the OA is improved very slightly with
128 filters; however, the computational cost of this network’s
configuration is considerably higher than with 64 filters. For
this reason, we consider 64 to be the optimum number of filters
for each convolutional layer.

H. Experiment 5: Testing Different HSI Classifiers

Our final experiment compares our proposed ODEnet mod-
els with some widely used classifiers available in the HSI clas-
sification literature. Fig. 10 (IP), Fig. 11 (UP), Fig. 12 (SV),
and Fig. 13 (KSC) show the classification maps obtained by
each considered method, while Table III (IP), Table IV (UP),
Table V (SV), and Table VI (KSC) give the individual class
accuracies and the global OA, AA, and Kappa values obtained
by each classifier with the corresponding standard deviations,
respectively, including also the obtained runtimes of each
experiment.

As a general comment, the improvement introduced by
spatial and spectral–spatial models over pixelwise classifiers
is remarkable. For instance, CNN2D introduces around 2%
points of improvement in OA when compared to the most
accurate spectral model, i.e., the SVM (for UP and SV)
and the MLP (for IP), with an exception in the KSC scene,
in which the spatial information appears to be not enough
discriminatory to carry out an accurate classification, as we
can observe in Table VI and the corresponding classification
maps in Fig. 13. The limitations of pixelwise and spatial-based
classifiers can be easily overcome by spectral–spatial classi-
fiers, where the combination of spectral and spatial–contextual
information is able to significantly reduce the uncertainty
and data variability of HSI pixels, as it can be observed on
complex data sets, such as IP (see Table III) and, particularly,
KSC (see Table VI). This results in better classification maps,
where the “salt and pepper” classification noise is practically
removed. However, it is interesting to focus on the classifica-
tion maps produced by the spatial–spectral CNN3D classifier
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TABLE VI

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE KSC DATA SET, USING 15% OF THE
AVAILABLE LABELED DATA FOR TRAINING AND 11 × 11 INPUT SPATIAL PATCH SIZE

(for instance in Figs. 11 and 13), where multiple patches have
been wrongly labeled, obtaining visually noisy classification
maps. This can be observed in the lower leftmost corner of
the KSC scene (see Fig. 13), where the vast majority of
pixels have been missclassified as Salt-marsh. These defi-
ciencies are highlighted by the differences between the OA
and AA values, where the AA is several percentual points
lower, indicating the existence of an overfitting problem (see
Tables III and VI).

Adding residual learning via ResNet can improve the accu-
racy results, reducing the gap between the OA and AA on
some HSI data sets, such as UP (see Table IV), SV (see
Table V), and KSC (see Table VI), and improving the visual
appearance of the corresponding classification maps. However,
this gap between the OA and AA scores cannot be reduced
by ResNet in the IP scene (in fact, for this scene, the gap
becomes larger). In turn, the proposed ODEnet models are
able to reach very similar OA, AA, and Kappa values in all
the cases, exhibiting very good consistency in terms of model
performance with higher robustness on the obtained results.
As we can observe, the proposed method is able to reach the
best accuracy scores in all the considered data sets, visually
clean classification maps, where the number of missclassified
patches is drastically reduced.

If we now focus on the execution times reported in Table III
(IP), Table IV (UP), Table V (SV), and Table VI (KSC), it can
be observed that pixelwise methods are faster than spatial
and spectral–spatial ones, being SVM the fastest classifier.
The computational cost of the proposed ODEnet model is
higher when compared to the other deep models (CNN2D,
CNN3D, and ResNet), mainly due to the great optimization
performed by the frameworks in which these classifiers have
been implemented. In this regard, it is necessary to conduct
an effort to optimize the code of the ODEsolver in order
to provide a more efficient version, although (as shown in
our second experiment) the use of higher tolerance values
allows for a significant reduction of computation times.

IV. CONCLUSION AND FUTURE WORK

This article proposes, for the first time in the literature,
a redefinition of the traditional discrete-layer ResNet model as
a continuous-time evolving model through the implementation
of an ODE parameterized by a neural network with the aim
of improving the classification of remotely sensed HSI data
by producing better and more robust feature representations.

The obtained experimental results, conducted using four
widely used HSI data sets, demonstrate the significant benefits
and improvements introduced by the proposed method, which
are able to reach consistently higher accuracy values in com-
parison with the traditional ResNet model, at the same time it
significantly reduces the number of parameters that need to be
used and fine-tuned, providing a highly efficient mechanism
to address the problems of overfitting and data degradation
in very deep networks. Moreover, the integration of adaptive
solvers, such as DOPRI5, offers great flexibility when process-
ing and classifying complex HSI scenes, allowing the model
to obtain highly refined features for classification purposes.

Encouraged by the good results obtained in terms of model’s
accuracy, in the future, we will develop an optimized and par-
allelized implementation of the proposed ODEnet, exploring
other solver algorithms in order to reduce the computational
complexity.
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