This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

Scheduling-Guided Automatic Processing of
Massive Hyperspectral Image Classification on
Cloud Computing Architectures

Zebin Wu —, Senior Member, IEEE, Jin Sun
, Senior Member, IEEE, Antonio Plaza
and Zhihui Wei

Jun Li

Abstract—The large data volume and high algorithm com-
plexity of hyperspectral image (HSI) problems have posed big
challenges for efficient classification of massive HSI data reposito-
ries. Recently, cloud computing architectures have become more
relevant to address the big computational challenges introduced
in the HSI field. This article proposes an acceleration method
for HSI classification that relies on scheduling metaheuristics
to automatically and optimally distribute the workload of HSI
applications across multiple computing resources on a cloud plat-
form. By analyzing the procedure of a representative classification
method, we first develop its distributed and parallel implemen-
tation based on the MapReduce mechanism on Apache Spark.
The subtasks of the processing flow that can be processed in
a distributed way are identified as divisible tasks. The optimal
execution of this application on Spark is further formulated as
a divisible scheduling framework that takes into account both
task execution precedences and task divisibility when allocating
the divisible and indivisible subtasks onto computing nodes. The
formulated scheduling framework is an optimization procedure

Manuscript received April 2, 2020; revised July 21, 2020; accepted
September 18, 2020. This work was supported in part by the National Natural
Science Foundation of China under Grant 61772274 and Grant 61872185;
in part by the Natural Science Foundation of Jiangsu Province of China
under Grant BK20180018; in part by the Fundamental Research Funds
for the Central Universities under Grant 30917015104, Grant 30919011103,
Grant 30919011402, and Grant 30920021132; in part by the Junta de
Extremadura (Decreto 14/2018, de 6 de febrero, por el que se establecen
las bases reguladoras de las ayudas para la realizacion de actividades de
investigacion y desarrollo tecnologico, de divulgacion y de transferencia de
conocimiento por los Grupos de Investigacion de Extremadura) under Grant
GR18060; and in part by the European Union’s Horizon 2020 Research and
Innovation Programme (EOXPOSURE) under Grant 734541. This article was
recommended by Associate Editor P. P. Angelov. (Corresponding author:
Jin Sun.)

Zebin Wu, Jin Sun, Yi Zhang, Yaoqin Zhu, and Zhihui Wei are
with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
(e-mail: wuzb@njust.edu.cn; sunj@njust.edu.cn; yzhang@njust.edu.cn;
zhuyaoqin@njust.edu.cn; gswei@njust.edu.cn).

Jun Li is with the Guangdong Provincial Key Laboratory of Urbanization
and Geo-Simulation, Center of Integrated Geographic Information Analysis,
School of Geography and Planning, Sun Yat-sen University, Guangzhou
510275, China (e-mail: lijun48@mail.sysu.edu.cn).

Antonio Plaza is with the Hyperspectral Computing Laboratory,
Department of Technology of Computers and Communications, University
of Extremadura, E-10071 Caceres, Spain (e-mail: aplaza@unex.es).

Jon Atli Benediktsson is with the Faculty of Electrical and Computer
Engineering, University of Iceland, 101 Reykjavik, Iceland (e-mail:
benedikt@hi.is).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2020.3026673

, Fellow, IEEE, Jon Atli Benediktsson

, Member, IEEE, Yi Zhang ~, Yaoqin Zhu,

, Fellow, IEEE,
, Member, IEEE

that searches for optimized task assignments and partition counts
for divisible tasks. Two metaheuristic algorithms are developed
to solve this divisible scheduling problem. The scheduling results
provide an optimized solution to the automatic processing of
HSI big data on clouds, improving the computational efficiency
of HSI classification by exploring the parallelism during the
parallel processing flow. Experimental results demonstrate that
our scheduling-guided approach achieves remarkable speedups
by facilitating the automatic processing of HSI classification on
Spark, and is scalable to the increasing HSI data volume.

Index Terms—Cloud computing, distributed and parallel pro-
cessing, divisible task scheduling, hyperspectral image (HSI)
classification, partitioning factor.

I. INTRODUCTION

URING recent years, hyperspectral remote sensing has

been widely applied in various fields of earth observa-
tion and space exploration [1]-[3]. Hyperspectral sensors are
now able to simultaneously measure hundreds of contiguous
spectral bands with high spectral resolution. In hyperspectral
images (HSIs), each pixel of the collected data cube can be
represented by a vector of which the entries correspond to
the spectral bands, providing detailed spectral information of
the underlying materials within the pixel [4]. Due to the sub-
stantial amount of spectral and spatial information offered by
HSI data, HSI has been popularly used in a variety of remote
sensing applications [5], [6].

Due to the large number of bands contained in HSIs, the
processing of high-dimensional HSI data generally requires
huge storage space and heavy computational load, and there-
fore falls within the category of big data problems [7].
Recently, cloud computing has become a promising solu-
tion to the efficient processing of HSI big data due to its
superior capabilities in high-performance computing. As the
demand for HSI big data processing continues to increase,
there have been more research studies seeking distributed
processing of large-scale HSI datasets on cloud computing
architectures [8]-[10]. The fundamental idea of these cloud-
based approaches is to use the distributed file system to cope
with the storage and management of HSI big data, and utilize
MapReduce [11], a distributed computing model, to support

2168-2267 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7162-0202
https://orcid.org/0000-0003-4855-2499
https://orcid.org/0000-0002-9941-6377
https://orcid.org/0000-0003-1613-9448
https://orcid.org/0000-0002-9613-1659
https://orcid.org/0000-0003-0621-9647
https://orcid.org/0000-0002-4841-6051

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

the parallel processing of data- and/or computation-intensive
tasks in HSI applications.

As one of the most popular and important techniques
for HSI interpretation, HSI classification aims at label-
ing HSI pixels into a set of predefined classes, nor-
mally using some previously available information about the
classes [12], [13]. Supervised and semisupervised classifi-
cations with kernel methods, for example, support vector
machines (SVMs) [14], [15], graph-based approaches [16],
sparse representation-based methods [17], [18], probabilistic
methods [19], and fusion-based methods [20], are all important
trends and have been extensively used for HSI classification.
Recently, spatial-spectral classification approaches [21]-[23]
have also shown noticeable success by exploiting spatial-
contextual information. Lu et al. [20] introduced a general fea-
ture fusion-based strategy for HSI classification that integrates
several different strategies for pixel interpretation, achieving
high classification accuracies. This method, called subpixel-,
pixel-, and superpixel-level feature classification (SPS-FC),
uses different kinds of features to achieve highly discrim-
inative information for classification purposes, adopting a
general fusion framework. By fusing multiple feature-induced
kernels to form one composite kernel, this method can effec-
tively improve the discrimination capability of the classifier.
However, due to its complicated classification flow, SPS-FC
becomes much less efficient when the HSI data size increases.
Also, SPS-FC requires manual intervention during the clas-
sification procedure. Therefore, it is necessary to develop an
efficient cloud-based solution to implement the automatic pro-
cessing and acceleration of the SPS-FC method for large-scale
HSI datasets.

Similar to other techniques for HSI classification, the
SPS-FC method consists of a set of subtasks, some of which
can be processed in parallel for distributing the computa-
tion load over a group of processing elements (PEs). In
addition, there is a considerable number of dependencies
among the subtasks of the entire classification flow that
impose an order of precedence on their execution. An imme-
diate conclusion is that when performing HSI classification
on clouds, a crucial step is the assignment of these sub-
tasks onto PEs and the order of task execution. This step,
which is referred to as scheduling [24], [25], determines the
parallelism of HSI classification flow on clouds. The schedul-
ing problem is generally NP-complete in most cases [26].
To solve this category of problems, metaheuristic algorithms
are extensively studied to search for near-optimal solutions
in solution space, for example, simulated annealing [27],
particle swarm optimization [28], and the quantum-inspired
evolutionary algorithm (QEA) [29].

In addition to the intertask parallelism that depends on the
assignment of tasks onto cloud computing resources, there
exists another kind of parallelism that can be exploited in
the parallel implementation of HSI classification, that is, the
intratask parallelism originating from the MapReduce-based
partitioning mechanism. The computation load of certain tasks
can be partitioned and assigned to multiple PEs. Tasks of this
kind are accordingly referred to as divisible tasks. In con-
trast, indivisible tasks that cannot be partitioned have to be

IEEE TRANSACTIONS ON CYBERNETICS

processed in their entirety on a single PE. The manner in which
task partitioning can be done depends on the task’s divisi-
bility property, that is, the property that determines whether
the computation load can be decomposed into any number
of load partitions, as long as it does not exceed the resource
limit [30].

Motivated by the above-mentioned intratask parallelism, we
define partitioning factor for each divisible task, indicating
the number of partitions that its computation load is decom-
posed into. Moreover, it should be noted that the distributed
computing mechanism would induce additional communica-
tion overhead. Due to the overhead of data communication
among computing nodes, the speedup achieved by employing
the parallel computing mechanism does not increase linearly
when the partitioning factor increases. For this reason, when
designing a scheduling strategy, it is of great importance
to take into account the partitioning factors for all divisi-
ble tasks. An appropriate decision regarding the partitioning
factors can be greatly beneficial for reducing the communica-
tion cost and improving the overall efficiency of distributed
processing. The determination of an optimal mapping of indi-
visible and divisible tasks falls into the category of divisible
scheduling problems [30], [31], and requires efficient schedul-
ing algorithms to achieve an optimal solution to parallel
implementation of HSI classification.

With the aforementioned ideas in mind, we propose a new
scheduling-guided method that supports the automatic process-
ing of complicated HSI classifications on Apache Spark. We
first develop the distributed and parallel implementation of the
SPS-FC method based on the MapReduce mechanism. The
tasks, whose computation load can be partitioned to facili-
tate parallel processing, are identified as divisible tasks. All
the subtasks (divisible and indivisible) of the SPS-FC flow
and the precedence relations among them are further rep-
resented by a directed acyclic graph (DAG). The optimal
execution of SPS-FC flow on Spark is further formulated as
a divisible scheduling framework that explores both intertask
parallelism and intratask parallelism. The formulated schedul-
ing framework is fundamentally an optimization procedure that
searches for the best partitioning factors for divisible tasks, as
well as the mapping of all tasks onto PEs. Different from
existing approaches that focus on exploiting data-level paral-
lelism by data partitioning [32], [33], our divisible scheduling
framework aims at the automatic and efficient processing
of complicated HSI applications on clouds by determining
the optimal intertask and intratask parallelisms. The opti-
mized solution of partitioning factors and task assignments
obtained by our scheduling-guided approach is beneficial
for achieving high utilization of PEs and reduced execution
time when processing this parallel HSI classification flow on
Spark. Specifically, this work makes the following innovative
contributions.

1) We develop a new parallel implementation to accelerate
the processing of a general and highly illustrative HSI
classification method on cloud computing platforms.

2) We propose employing scheduling strategies to
facilitate the automatic processing of HSI classifications
with complicated flows by exploiting the intertask

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: SCHEDULING-GUIDED AUTOMATIC PROCESSING OF MASSIVE HYPERSPECTRAL IMAGE CLASSIFICATION 3

and intratask parallelisms involved
implementation.

3) We formulate the resulting divisible scheduling problem
as an optimization framework that incorporates task
assignments and partitioning factors as decision
variables.

4) We develop effective metaheuristic algorithms to solve
the formulated divisible scheduling problem, search-
ing for the most appropriate solution to the automatic
processing of HSI classification on clouds.

The effectiveness of the scheduling-guided approach is
verified on two HSI datasets by using two representative classi-
fication applications. Our experimental results demonstrate that
guided by the divisible scheduling solutions, our approach leads
to a significant improvement in computational efficiency with
different numbers of Spark nodes and for different HSI data sizes.
In addition, the proposed approach exhibits linear scalability
with regard to the increasing volume of the HSI dataset.

The remainder of this article is organized as follows.
Section II describes the parallel implementation of the SPS-
FC classification method on Spark. Section III discusses the
significance of exploiting intertask and intratask parallelisms
in HSI classification, and further formulates the divisible
scheduling model. Section IV details the proposed schedul-
ing algorithms for solving the formulated model. Section V
presents the experimental results on public HSI datasets.
Finally, concluding remarks and discussions are provided in
Section VI.

in the Spark

II. DISTRIBUTED AND PARALLEL IMPLEMENTATION OF
SPS-FC CLASSIFICATION METHOD

The SPS-FC method is a sophisticated and effective fea-
ture fusion approach for HSI classification. The processing
flow of this method consists of many subtasks with strong
dependencies among them. In this section, we provide a cloud
implementation of this method that partitions the computation-
and/or data-intensive tasks into multiple small tasks relying on
the MapReduce mechanism. With these divisible tasks, which
can be distributed and processed on multiple PEs, finding an
optimal allocation of all tasks on limited cloud computing
resources naturally becomes a divisible scheduling problem.

A. Serial Processing Flow

The SPS-FC starts with the extraction of subpixel-level,
pixel-level, and superpixel-level features from the HSI, respec-
tively. Then, multiple feature-induced kernels are fused to form
one composite kernel. The fused composite kernel is further
incorporated with an SVM classifier to determine the labels of
pixels. The serial processing flow of SPS-FC classification is
illustrated in Fig. 1, and mainly consists of 17 subtasks. The
detailed procedures are summarized in Algorithm 1, including
ten essential steps.

As shown by Algorithm 1, the SPS-FC method involves
feature extraction at three different levels, as well as pixel-
based classification based on the fused features. The tech-
niques included in the SPS-FC are representative of sev-
eral HSI data processing operations, including dimensionality

Kernell Kernel2 Kernel3 TrainK 1 TrainK2 TrainK3
EEEESE | [EEEEE | | EEEEmE | | mm
RN EEEEEE [
I I
| | |
]
Kernel123
[T 7]
EEEEEE
[
| |
Prediction
Fig. 1. Serial processing flow of the SPS-FC method.

reduction [principal component analysis (PCA) and mini-
mum noise fraction (MNF)], clustering (k-means), spectral
unmixing constrained energy minimization (CEM), feature
extraction (morphology), classification (SVM), and superpixel-
based segmentation entropy rate superpixel (ERS). As a result,
it represents a general processing chain and a highly repre-
sentative framework for HSI data interpretation. Several of
these procedures require massive data processing or large-
scale matrix computations. Such a complicated algorithmic
workflow would inevitably limit its computational efficiency
on a single machine. By taking advantage of the MapReduce
scheme on Spark, the computation load of those computation-
and data-intensive procedures can be divided and distributed
across multiple PEs to accelerate their execution.

B. Distributed and Parallel Implementation on Spark

We use Apache Spark, an advanced cloud computing archi-
tecture, as the platform for parallel processing of HSI big data.
Spark uses resilient distributed datasets (RDDs) as the fun-
damental data structure to support fault-tolerant, in-memory
cluster computation [37]. In addition, Spark relies on a driver
program to manage a cluster of worker nodes to support dis-
tributed computing. The workers can store RDD partitions in
random access memory (RAM) across operations. The driver
is responsible for defining, invoking, and tracking these RDD
partitions [38]. During runtime, the driver program launches
multiple workers to load RDD data from a distributed file
system and holds the loaded data partitions in memory.

Considering that the extraction of superpixel-level features
in the SPS-FC method is largely dependent on the spatial

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1: Serial SPS-FC

Algorithm 2: Parallel SPS-FC

1 Apply MNF transformation [34] to the original HSI for the
purpose of HSI denoising.

2 Perform unsupervised clustering using the k-means algorithm
and use the cluster centers as endmembers.

3 Use CEM [35] algorithm to calculate the abundance fractions,
that is, the subpixel-level features (denoted by Featurel).

4 Perform PCA on the original HSI for dimensionality reduction.

5 Perform morphological operations, e.g., erosion and
reconstruction, on each dimension and combine the results on
all dimensions to obtain the pixel-level features (denoted by
Feature?2).

¢ Employ ERS algorithm [36] to perform superpixel
segmentation, in order to generate the label matrix.

7 Rely on the label matrix to compute the mean values of
spectral vectors, that is, the superpixel-level features (denoted
by Feature3).

8 Apply radial basis functions to featurel, feature2, and feature3
to obtain the corresponding subpixel-, pixel- and
superpixel-level kernels (denoted by Kernell, Kernel2, and
Kernel3, respectively). Fuse the three kernels form one
composite kernel Kernel123.

9 Generate the training set of fused features Traink123
through random sampling on featurel, feature2, and
feature3. The final training model is obtained by tuning
SVM model parameters.

10 Determine the final labels of pixels according to the composite
kernel and training model.

correlation information, simply partitioning the original HSI
data for distributed processing (without preserving the corre-
lation information) may have a significant impact on the final
classification results. However, for certain tasks, for exam-
ple, MNF transformation and k-means clustering, the original
dataset can be partitioned to facilitate distributed processing.
In general, a massive HSI data processing procedure can be
implemented in a distributed fashion by the following steps.

1) First, we decompose the original HSI dataset into many
spatial-domain partitions and store the data partitions
on Hadoop’s distributed file system (HDFS), which the
filesystem adopted by Spark. Each data partition stored
in HDFS is assigned an offset value for fast lookup. In
this manner, the Apache driver program is able to read
the data partitions of the original HSI dataset.

2) When data partitions have been loaded into memory, we
perform a “map” operation to convert them into RDD
format. The converted RDD instances can be then pro-
cessed by the workers simultaneously. Managed by the
driver program on the master node, all workers work
simultaneously to process the partitioned data on indi-
vidual RDD instances. The workers submit the results
to the master after finalization.

3) The driver program performs the “reduce” operation to
merge the results produced by all worker nodes. The
“reduce” operation analyzes all key-value pairs and com-
bines the values that shared the same key following the
driver program. The final result will be broadcasted to
all worker nodes and will be stored into HDFS.

To be specific, the detailed procedures of the distributed and

parallel SPS-FC implementation are described in Algorithm 2.

1 Load and convert the original HSI data from HDFS. The
converted data in RDD format are denoted by DataRDD.

2 Perform a ‘map’ operation on DataRDD for the parallel
processing of MNF transformation on all workers and obtain
mnfRDD.

3 Perform a ‘map’ operation on mnfRDD to implement the
parallel k-means clustering. Broadcast the clustering results
KMeansResult to all workers.

4 Perform another ‘map’ operation on mnfRDD to implement the
parallel CEM algorithm. Due to the spatial correlations among
pixels, it is infeasible to directly partition the pixel matrix to
perform matrix multiplication mnfRDD xmnf rRDD!. Thus, we
compute mmERDDxmnfRDD on driver end and broadcast the
results Rinv. All workers compute in parallel
KMeansResult xRinvxmnfRDD to obtain the subpixel-level
features FeaturelRDD.

5 Perform another ‘map’ operation on DataRDD for the parallel
processing of PCA method and obtain pcaRDD.

6 Perform a ‘reduce’ operation on all pcaRDD partitions to
merge the results. The merged data are stored on the driver end
and denoted by pcaData.

7 Perform a ‘map’ operation on DataRDD for the parallel
processing of erosion and reconstruction on the partitioned data.
The results are merged to obtain pixel-level features
Feature2RDD.

8 On the driver end, generate the label matrix by using pcaData
as the input to ERS algorithm. Compute the superpixel-level
features Feature3RDD based on the label matrix. Broadcast
Feature3RDD to all workers.

9 Perform ’map’ operations on FeaturelRDD, Feature2RDD,
and Feature3RDD to generate kernel matrices KernellRDD,
Kernel2RDD, and Kernel3RDD, respectively. Use the
generated RDDs to form a new kernel matrix K123RDD.

10 Sample a set of data from K123RDD and store the training
samples on the driver end. Train the SVM model and broadcast
it to all workers.

11 Perform a ‘map’ operation on K123RDD for the parallel
processing of pixel classification and obtain FinalRDD.

12 Perform a ‘collect’ operation on the driver end to store
FinalRDD into HDFS.

As can be observed in most steps, the key idea is to identify
those subtasks whose computation load can be decomposed
into multiple load partitions and use the distributed comput-
ing scheme to accelerate their execution. Note that for certain
tasks, we need to perform necessary transformations to the
original data to ensure their task divisibility. Fig. 2 sum-
marizes the overall workflow of the parallel version of the
SPS-FC method. Compared with the serial workflow in Fig. 1,
a number of “map” and “reduce” operations as well as RDD
partitions are introduced to enable the distributed and parallel
implementation of the algorithm.

Despite the efficiency of parallel processing on Spark, inter-
task and intratask parallelisms enable further improvements in
terms of distributed processing efficiency by means of schedul-
ing strategies. On the one hand, there are many dependencies
among the subtasks of the processing workflow that impose
an order of precedence on their execution. On the other hand,
certain divisible tasks can be executed in parallel, and are,
therefore, in demand of an appropriate allocation of com-
puting resources. For example, as it can be observed from
Fig. 2, the three feature extraction tasks (FeaturelRDD,

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: SCHEDULING-GUIDED AUTOMATIC PROCESSING OF MASSIVE HYPERSPECTRAL IMAGE CLASSIFICATION 5

! read

DataRDD

reduce

map map

mnfRDD pcaRDD reduce pcaData Data

reduce Features

| KmeansResult |

N

parallelize

broadcast v
FeatureIRDD Feature2RDD

' map

'map
' KemelIRDD | | Kemel2RDD |

zipPartition

Feature3RDD

' map

© Kemel3RDD |

| KI23RDD

. SVMRDD

' store

Fig. 2. Parallel processing workflow of SPS-FC method on Spark.

Feature2RDD, and Feature3RDD) can be executed in
parallel, but they all take precedence over K123RDD dur-
ing task execution. In subsequent sections, we propose our
own scheduling model and effective scheduling algorithms to
address the aforementioned issues.

III. DIVISIBLE SCHEDULING MODEL FOR OPTIMAL
DISTRIBUTED PROCESSING

According to the preceding analysis, it is crucial to employ
scheduling techniques to further improve the computational
efficiency of the HSI classification method by exploiting the
intertask and intratask parallelisms during its distributed pro-
cessing. In this section, we formulate a divisible scheduling
model that seeks for the optimal scheduling solution of task
assignments and partitioning factors for achieving the best
acceleration rate on clouds.

We first discuss the parallelism among tasks. The processing
flow of an HSI application, for example, the SPS-FC classi-
fication flow illustrated in Fig. 1, is typically composed of a
set of subtasks. Also, there may exist dependencies among
the tasks belonging to a specific application workflow. DAG
is a commonly used representation to characterize the appli-
cation workflow [39]. Specifically, a DAG can be denoted by
G = (V,E), where V = {v, v2, ..., v,} denotes a set of tasks

to be allocated onto PEs, and £ = {(7,/)} imposes a set of
precedence constraints upon any two communicating tasks. In
addition, the duration time of each task v; is denoted by w;.
Referring to Fig. 1, the classification process of the SPS-FC
method is apparently a typical workflow that complies with
the definition of DAG.

As mentioned previously, the scheduling procedure is to
determine the optimal mapping relationship between tasks and
PEs. In this work, we propose employing scheduling strategies
to minimize the total execution time of the SPS-FC classifi-
cation process. This performance measure is known as the
schedule length or the makespan of task execution. When
determining the mapping from tasks to PEs, it is required to
satisfy all precedence constraints. For any edge {(i,)} belong-
ing to the DAG, the precedence relation between task v; and
task v; implies the following constraint:

si+w; <s; V(@G,j) €k (1)

where s; and s; stand for the start times and end times for v;
and v;, respectively, and w; denotes v;’s actual execution time
on the PE it is mapped onto. Note that for a divisible task,
its actual execution time is not a constant value, but varying
value depending on its partitioning factor.

We then discuss the parallelism within a divisible task. For
a divisible task, due to the overhead of data communications
among PEs, the speedup achieved by the MapReduce mech-
anism does not increase linearly with more data partitions.
In other words, the ratio of speedup to partition count would
decrease due to the increasing communication overhead. As
will be demonstrated in our experimental results, there is a
critical number of data partitions that corresponds to the best
tradeoff between communication overhead and computational
efficiency. With a limited number of PEs, it is necessary to
determine the number of partitions for distributing the compu-
tation load of each divisible task or, equivalently, the number
of PEs that should be assigned for executing each divisible
task. In this work, we define this set of decision variables as
partitioning factors. If several divisible tasks can be executed
in parallel, then the scheduling model has to assign appropriate
partitioning factors for divisible tasks, according to their com-
putation workloads. Otherwise, the computational efficiency
of distributed processing would be compromised due to the
inefficient utilization of cloud computing resources. Note that
the partitioning factors have a direct impact upon not only the
number of required PEs but also the varying execution time
of partitioned tasks. For instance, suppose that there are two
divisible tasks in parallel, and their critical values of partition-
ing factors are both below the number of available PEs. In this
scenario, simply assigning all PEs to execute a single divisible
task may introduce a considerable communication overhead.
It would be more judicious to let the partitioning factors be
close to their critical values to achieve higher efficiency of
parallel computing.

Taking into account the above-mentioned two concerns,
Fig. 3 illustrates the overall framework of the proposed
divisible scheduling problem, in which task assignments and
partitioning factors are both incorporated as decision variables
for minimizing the total execution time of an HSI application.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
Task Graph
Divisible Tasks o
Indivisible Tasks
EEE N
aEEn aEEnm
partitioning
P
1 1)/
[[] ,' 'l ’
/
1 [4
\ \ | . ! ¥
\ N 1 mapping ! A
\ N S
\ N1 ! s
\\ \‘/1 7 S '
1 1ot 1 d
[\ p; J?1V1s1ble Schedulll,ng/ ' J
A) 7 7 T
AN // \\ ,’:, I\
\\ /I \\\ -7 “
N Sl 0 \
- S~ \
PN IS DT \
PE, PE, PE; | wmm [PE, PE,
Computing Resource Pool
Fig. 3. Framework of divisible scheduling.

In order to represent the SPS-FC processing flow using a
DAG, we first identify the divisible tasks that can be parti-
tioned into multiple small tasks. The partitioning factors of
divisible tasks are a set of decision variables to be determined
by the scheduling model. All partitioned tasks, together with
the indivisible tasks, will be allocated to a limited number of
PEs according to a mapping function, which represents another
set of decision variables. The divisible scheduling problem in
this work is to determine the optimal values of these decision
variables under the constraint of limited computing resources.

In consistence with the scheduling framework in Fig. 3, we
now present a rigorous mathematical model that formulates the
proposed divisible scheduling model as an integer program
(IP). The capacity of the resource pool is R. Any resource
k(k=1,2,...,R) is identical to each other. Given a workflow
o with n tasks, e,; = 1 denotes that task v, is a predecessor
of task v;, and e,; = 0 otherwise. We define P; = {v,lep; = 1}
to denote the predecessor set of task v;. We define two binary
variables x;; and y;; as the decision variables. x; = 1 denotes
that task v; is in execution on time slot ¢, and x;; = 0 otherwise.
vik = 1 indicates that the kth PE is allocated to execute task i,
and y;; = 0 otherwise. Accordingly, the total number of PEs
for processing task v; is given by

R
rp = Zyik‘
k=1

Then, the execution duration when 7; resources are allo-
cated to the task is denoted by d,. Note that not all tasks can
be executed in parallel. As mentioned in Section II-B, those
tasks that can be processed in parallel are identified as divisi-
ble tasks, and the other tasks are indivisible ones. Obviously,
the start time is given by s; = argmin {¢|x;; = 1}. In order to
comply with the precedence relationships between task v; and
its predecessors, for task i’s any predecessor task Vv, € P,

2

IEEE TRANSACTIONS ON CYBERNETICS

we have the following constraint:
argminfx; = 1} > max{arg min{x,, = 1} + d,i}. 3)
t t

The minimal value of s; is in fact task v;’s earliest start time.
We use EST; to denote it and determine it by

“)

With the symbols and concepts defined above, we finally
present the following optimization model for the proposed
divisible scheduling model:

EST; = max {s, +d;'} Vv, € P:.

min. ¢, = max{S; + d;}

= max{arg min{x; = 1} + D,-} &)
t
s. t. argmin{x; = 1}
t
> max{arg min{xp, = 1} + dpj} Yv, e P (6)
t
xite{oﬂl}v l"iE{l,Z,...,R} (7)
n
> xuri <R ®)
i=1

where the optimization objective is to minimize the makespan
¢ of an application workflow. Integer variables x;; and »; (i =
1,2,...,n), which are the two sets of decision variables in
the optimization model, stand for the assignment of tasks onto
PEs and partitioning factors for divisible tasks, respectively. In
addition, task precedence constraints and computing resource
constraint are imposed.

IV. SCHEDULING ALGORITHM

This section provides the details about the metaheuristic
algorithms, which are built upon the QEA framework, specifi-
cally for solving the formulated divisible scheduling problem.
QEA is advantageous to many existing metaheuristics since
the Q-bit representation in QEA can enhance population
diversity and solution exploration capability. In addition to
the standard QEA (SQEA) scheduling algorithm, we further
design a hybrid QEA (HQEA) scheduling metaheuristic by
incorporating a solution initialization scheme and a solution
exploration method into SQEA. Before presenting the details
of the algorithm, we first provide a brief introduction to quan-
tum computing, which is the foundation of our proposed
QEA-based algorithms.

A. Preliminaries of Quantum Computing

O-bit is the fundamental concept in the QEA framework.
O-bit is the smallest information unit stored in a two-state
quantum computer. The main characteristic of Q-bit is that it
could be in the “1” state or in the “0” state, or in the linear
superposition of the two states. The probabilities of a Q-bit
being “0” state and state “1” can be represented by |«|*> and
|B|?, respectively, where o and B are two complex numbers
satisfying ||>+|8|*> = 1 [40]. A O-bit individual as a string of
ay|a Oln>, where |a|? +

B1|B2| | B

n Q-bits can be formulated as

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: SCHEDULING-GUIDED AUTOMATIC PROCESSING OF MASSIVE HYPERSPECTRAL IMAGE CLASSIFICATION 7

|,3|2 =1 holds for i = 1,2,...,n. We can convert a Q-bit
individual into a binary string by collapsing each state into
either “0” state or “1” state. The exact state of each Q-bit
depends on the values of |«|? and |8|* [41].

The state of a Q-bit can be changed by a quantum gate [40].
A quantum gate is a reversible gate and can be denoted as
a unitary operator U acting on the (Q-bit states, satisfying
UTU = UU" = I, in which U is the Hermitian adjoint of U.
One commonly used quantum gate is rotation gate, which has
the following format:

cos(AB)

_ —sin(A0)
U(A0) = |:sin(A9) :|

cos(AB)

where A6 is the rotation angle. Accordingly, the updating rule
for the O-bit coefficients can be expressed as

a] a] [cos(A) —sin(Ad)][a
|:ﬂ'i| = U(a9) |:,3i| - [sin(AG) cos(AG)j| [,3] ©)
The value of A6 can be determined in several ways, for exam-

ple, lookup table [40], or the distance between the objectives
of the current best O-bit individual and its offsprings [42].

B. Solution Representation

In this work, we use a binary string converted from a Q-bit
individual to represent a scheduling solution. The converted
binary string would be of size n x m, where n is the number
of tasks belonging to a given DAG, R is the number of PEs for
executing the tasks, and m is an integer satisfying 2"~1 <
R < 2™ We can further convert each binary string into a
decimal string of length n by decoding each m consecutive bits
in the binary string to a decimal number. The obtain decimal
string can represent a valid scheduling solution as it specifies a
unique mapping from tasks to available computing resources.
In case that the decimal value converted from the binary string
may be greater than R, we use a modulo operation to ensure
a valid candidate solution.

C. Solution Initialization

We employ the earliest start time first (ESTF) rule to gener-
ate an initial solution, for the purpose of providing the HQEA
metaheuristic with a good start. To this end, we calculate the
ESTs of all tasks to be scheduled according to (4) and sort
all tasks by their EST values in a nondescending order. For
indivisible tasks whose execution durations are prespecified,
their ESTs can be uniquely determined. On the other hand,
the execution duration of divisible tasks varies depending on
the number of allocated PEs, a divisible task’s EST is also a
varying value. In this work, we use task durations in the serial
processing flow (i.e., the execution times on a single PE) to
calculate ESTs and sort the tasks.

D. Solution Evaluation

Given a candidate solution in the format of a binary
string converted from a Q-bit individual, we can obtain the
corresponding solution to the divisible scheduling problem
and further evaluate the quality of this solution, that is, the
makespan of HSI classification that the scheduling solution

Algorithm 3: Solution Evaluation

Input: A candidate solution ¢, and a prespecified task sequence
ts

Output: The corresponding makespan ¢, (¢)

Convert ¢ into a decimal string ¢;;

Set the ith decimal number in ¢z as g;;

Initialize an empty task set ®;

while (s is not empty) do

Select all the tasks in zs of which the predecessor tasks

have been completed and add them into ®;

6 Allocate the g;th PE to each indivisible task v; in &;

[T N R

7 Allocate the remaining PEs to divisible tasks according to
their serial execution durations;
8 Determine the execution duration df" of each task in ®

according to the number of allocated PEs r;;
9 Calculate the end time of each task in ® by

e; = EST; + d:-ﬁ’.;
10 Update ¢y (¢) = max{cy(¢), max{e;|i € P}};
11 Remove all tasks in @ from fs;

-

2 return cy,(¢);

leads to. Solution evaluation depends on a task sequence ts
and processes tasks in s sequentially. This procedure selects
all the tasks whose predecessor tasks have been completed
and adds these tasks into a set ®. If a task v; in ® is an indi-
visible task, the g;th PE, which is selected by mapping the
ith m consecutive bits to a decimal number, would be des-
ignated for processing v;. For those divisible tasks in ®, we
allocate the other R —/ PEs (/ is the number of PEs that have
been assigned for indivisible tasks) to them according to their
serial execution durations, with the guarantee that each task
is assigned to exactly one PE. For example, suppose there
are three divisible tasks whose serial durations are a, b, and
¢, respectively. The numbers of PEs assigned for executing
them (i.e., partitioning factors) are a x (R — [)/(a + b + ¢),
bx(R—1D/(a+b+c),and ¢ x (R—1)/(a+b+c), respectively.
In case that ax (R—1)/(a+b+c), bx (R—1)/(a+b+c), and
cx (R—=1)/(a+ b+ c) are not integers, we apply floor opera-
tions l[a X (R—D/(a+b+c)], |bx(R—-D/(a+b+c)], and
R—laxR-D/(a+b+c)]—|bx(R—-D/(a+b+c)]. In this
manner, we can obtain the duration times of divisible tasks
(ie., df") according to their partitioning factors and calculate
their end times by e¢; = EST; + dir" . Once all tasks in ts have
been scheduled, the makespan of application workflow can be
determined by max {e;|i = 1,2, ..., n}. Algorithm 3 summa-
rizes the algorithmic details about solution evaluation with a
low complexity of O(n).

E. Solution Exploration

We use an insertion-based exploration method (IEM) to gen-
erate new task sequences based on a given one. For a task
sequence femp consisting of n tasks, IEM removes the uth
task (u =1,2,...,T) from temp and later reinserts this task
into temp at every position other than its original position.
In this manner, IEM is capable of generating n — 1 different
task sequences, which will be used by the SQEA algorithm to
explore more high-quality solutions. If a certainly generated
task sequence gts finds a scheduling solution better than the
given task sequence temp, SQEA would replace temp by gts.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 4: SQEA Scheduling

Algorithm 5: HQEA Scheduling

Input: an application workflow G, and ts
Output: The minimal makespan c,, (best)
1 Initialize all the individuals in W;
2 for each ¢ € ¥ do
3 Convert ¢ into the corresponding solution ¢;
4 | Perform Algorithm 3 to evaluate ¢y

5 Record the best solution in WV as {pegs

6 Set {pess’s corresponding makespan as ¢, (best);
7 while (termination criterion is not met) do

8 for each ¢ € ¥ do

9 Use the rotation gate to update ¢;

10 Convert the updated ¢ to obtain its corresponding
solution gy;

1 Perform Algorithm 3 to evaluate ¢y

12 if (¢ is better than {p.s) then

13 | Set Lpest < ¢ and co(best) < co(p);

14 return c,, (best);

IEM repeats the same procedure for all other tasks in femp
to generate new task sequences until the T'th task in femp has
been used for solution exploration.

F. Algorithm Description

We now present the proposed SQEA algorithm and its
extended version HQEA. Algorithms 4 and 5 describes the
details about SQEA and HQEA, respectively. Referring to
Algorithm 4, after initializing all Q-bit individuals (line 1),
SQEA converts each individual into the corresponding solution
(line 3) and uses the solution valuation method in Algorithm 3
to calculate the quality of each converted solution (line 4).
Then, as long as the termination criterion is not met (line 8),
SQEA iteratively applies the rotation gate to update each
individual, converts the updated individual into a scheduling
solution, and evaluates solution quality (lines 10—12). The best
solution found during the iterative procedure is identified as
the final scheduling solution and the makespan corresponding
to the final solution is returned by SQEA. It is worth empha-
sizing that during the solution evaluation procedure, SQEA
uses a randomly generated task sequence #s to assign tasks. In
other words, SQEA depends on #s. Thus, the effectiveness of
SQEA depends on the quality of task sequence #s.

To address the above-mentioned limitation of SQEA, we
construct HQEA by incorporating the solution initialization
and [EM strategies. As described in Algorithm 5, starting with
a task sequence ts generated by the ESTF rule (line 1), HQEA
employs SQEA to produce a high-quality scheduling solution
(line 2). Based on this solution, SQEA uses IEM to generate a
set of new task sequences and inputs each generated sequence
to SQEA to explore better solutions (lines 5-16). The final
result of HQEA is the makespan corresponding to the best-
explored solution (line 17).

V. EXPERIMENTAL RESULTS

The performance of the scheduling-guided method was eval-
uated on a cloud system implemented on a Spark cluster
consisting of one master node and six slave nodes, which are

Input: an application workflow G

Output: The shortest makespan ¢, (best)

1 Apply the ESTF rule to generate a task sequence fs;

2 Set ¢y (best) < SQEA(ts);

3 Set temp < ts;

4 Initialize an empty set of task sequences W;

s for (u < 1 to n) do

6 Remove the uth task in task sequence temp;

7 Reinsert the removed task into temp at every position other
than the original one;

8 Add all n — 1 generated task sequences into WV;
9 for (each gts € V) do

10 Set ¢y (gts) < SQEA(gts);

11 if (cy(gts) < cy(best)) then

Set temp < gts;
Set ¢y (temp) < cy(best) < cy(gts);

12
13

14 return c,(best);

all created by virtualization tools. The master node is built
on a host equipped with a 24-core Intel Xeon E5-2680 v3
CPU operating at 2.5 GHz and 242-GB memory. We deploy
six slave nodes on three IBM blade servers. Each of the two
slave nodes on a blade server is assigned with an Intel Xeon
E5-2680 v3 CPU and 240-GB memory. All Spark nodes have
installed Ubuntu 16.04 as the operating system. In Spark con-
figuration, we launch 20 workers on each slave node and each
worker is assigned with a single core.

We use the widely used and publicly available “University
of Pavia” HSI dataset to evaluate the performance of the
proposed scheduling-guided approach for accelerating the
SPS-FC classification flow in terms of both classification accu-
racy and computational efficiency. The “University of Pavia”
image contains 103 spectral bands after discarding the most
seriously noisy bands. Each band is of size 610 x 340, and the
data size of the original image is 226 MB. The spatial resolu-
tion of this image is 1.3 m, and the spectral coverage ranges
from 0.43 to 0.86 um. We randomly select 60 samples from
these nine prelabeled categories to generate a training set with
540 samples for evaluation purposes.

To fully justify the effectiveness of the proposed approach,
we perform additional experiments on the “Indian Pines” HSI
dataset by using the spatial correlation regularized sparse rep-
resentation classification (SCSRC) method [43]. SCSRC is a
typical HSI classification method that relies on the alternating
direction method of multipliers (ADMMs) [44] to solve the
sparse representation regularization problem. We select 200
spectral bands out of the 220 bands contained in the “Indian
Pines” image for extracting discriminative information. Each
band consists of 145x 145 pixels.

A. Evaluation of Parallel Implementation

As the very first step, we first present the classification
results by performing the SPS-FC method in a distributed way
on Spark. Following the parallel processing flow in Section II,
the divisible tasks of the SPS-FC method are partitioned and
processed on multiple workers relying on Spark’s MapReduce
mechanism. For the sake of comparison, we also implemented

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: SCHEDULING-GUIDED AUTOMATIC PROCESSING OF MASSIVE HYPERSPECTRAL IMAGE CLASSIFICATION 9

TABLE 1
CLASSIFICATION ACCURACIES BY USING THE SERIAL AND PARALLEL SPS-FC METHODS

Serial SPS-FC

Parallel SPS-FC

4 workers 8 workers 16 workers 32 workers 64 workers
Accuracy 95.59% 95.57% 95.58% 95.56% 95.55% 95.57%
TABLE 11
RUNTIME STATISTICS FOR ALL DIVISIBLE TASKS (SECONDS)
s Parallel SPS-FC
Divisible Task Serial SPS-FC
Name 4 workers 8 workers 16 workers 32 workers 64 workers
MNF 10.41 4.88 3.70 3.32 3.18 3.14
k-means 16.66 7.84 5.74 3.65 3.54 2.70
CEM 3.07 0.48 0.39 0.29 0.25 0.33
PCA 1.88 1.15 0.83 0.75 0.76 0.78
Erosion 16.63 6.81 4.42 3.60 3.26 3.04
Reconstruction 8.16 3.41 2.21 1.80 1.76 1.71
Spectral Mean 0.18 0.19 0.18 0.18 0.23 0.22
Kernell 10.87 3.28 1.42 0.72 0.55 0.42
Kernel2 26.57 6.25 2.50 1.11 0.66 0.41
Kernel3 45.26 10.32 4.33 2.13 1.41 1.02
K123 0.81 0.27 0.11 0.05 0.03 0.02
Prediction 31.31 6.52 5.82 2.60 1.17 0.87
Total 171.81 51.40 31.65 20.20 16.80 14.66
Speedup —_ 3.34 % 5.42 % 8.51x% 10.22x 11.72x

(b)

(a)

Fig. 4. Classification results by using the (a) serial and (b) parallel SPS-FC
methods.

the serial version of the SPS-FC method by executing all the
subtasks on a single computing node. Fig. 4(a) and (b) shows
the classification results obtained by the serial SPS-FC and
parallel SPS-FC, respectively. We observe that the result by
parallel SPS-FC matches well with the result in the serial
version. In the parallel implementation, all 64 workers are
employed to produce the classification result in Fig. 4(b).
We further investigate the classification accuracies by vary-
ing the number of workers, as listed in Table I. Considering
that the random sampling operation in the classification flow

may lead to a slight difference in classification result even
with the same experimental setup and Spark configuration,
we repeat each set of experiments five times and calculating
the average accuracy. When executing the parallel SPS-FC
on Spark, we notice that the classification accuracy is almost
unchanged with different worker counts. More importantly,
the difference in classification accuracy between the parallel
SPS-FC and serial SPS-FC is negligible, demonstrating the
effectiveness of processing HSI data in parallel on Spark.
We then justify the advantage of the parallel SPS-FC method
over the serial flow in total execution time. For all divisi-
ble tasks in SPS-FC processing flow, Table II provides the
execution times by employing different numbers of workers
on Spark. The original HSI data are split into RDD parti-
tions according to the number of available workers. In other
words, without the consideration of scheduling strategies yet,
the partitioning factor is equal to the worker count. The exe-
cution time measured for the serial SPS-FC is also provided
for comparison. The runtime statistics in columns three to
seven of Table II show that the total execution time decreases
as the number of workers grows. The last two rows record
the total execution time of all divisible tasks, as well as the
speedups over the serial SPS-FC. When the worker count is
relatively small (below 32), an obvious increase in speedup
can be observed. However, if the worker count exceeds a
certain value, the achieved speedup becomes less significant.
For instance, employing 32 workers only achieves a 10.22x
speedup, and the speedup obtained by deploying 64 work-
ers is merely 11.72x. This observation is due to the fact that
more worker nodes would lead to the increasing time overhead
induced by frequent communications among Spark nodes. The

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

m Indivisible Tasks mDivisible Tasks

90 |
80 |
m
Q70+
g 60 |
Fo5 |
c
o
S 40 |
=
o
g 30 |
1}
20 |
10
0 . ‘ ‘ ‘
8 16 32 64
Number of Workers
Fig. 5. Execution times with different numbers of workers.
m Parallel SPS-FC m Serial SPS-FC
4000
3560
3500
m
o 3000 2730
g 2500
=
S 2000 |
5 1819
5
g 1900 ¢ 1241
i
1000
622
500
205 275
55
0 =l . ‘ ‘
HSI0 HSI1 HSI2 HSI3 HSI4
HSI Dataset

Fig. 6. Execution times for different HSI datasets. The results for HSI3 and
HSI4 in serial SPS-FC are unavailable due to the large data volume.

amount of time spent in data transmissions accounts for a
substantial proportion of the total execution time. In addition,
certain divisible tasks involve frequent data exchanges among
Spark nodes, for example, MNF, k-means, and morphologi-
cal operations, and therefore result in limited improvements
of computational efficiency.

Fig. 5 further presents the total execution time for all divis-
ible and indivisible tasks. As shown in the figure, the runtime
for indivisible tasks is independent of the worker count, as
they have to be executed serially on a single PE. Due to these
indivisible tasks that cannot be accelerated, the total execution
time becomes stable when the worker count exceeds 16. It
is, therefore, reasonable to predict that no further significant
reduction in execution time would be achieved by continu-
ing to increase the worker count. This important observation
indicates that the overall improvement in computational effi-
ciency in accelerating an HSI application is greatly dependent
on the application’s processing workflow, more specifically,
on the relationship between the runtime for indivisible tasks
and the runtime for all tasks.

IEEE TRANSACTIONS ON CYBERNETICS

We further examine the scalability of the parallel SPS-FC
method when the HSI dataset is of large volume. For this pur-
pose, we mosaick the original “University of Pavia” dataset to
generate large-scale HSI datasets of different sizes. The gen-
erated large-scale datasets are denoted by HSI1 (610 x 3400 x
103, 2.21 GB), HSI2 (610 x 6800 x 103, 4.42 GB), HSI3
(610 x 13600 x 103, 8.82 GB), and HSI4 (610 x 27200 x 103,
17.66 GB), respectively. We increase the data size to observe
the computational efficiency when performing SPS-FC classi-
fication. In this set of experiments, we fix the worker count
at 64. Fig. 6 presents the runtime statistics for executing the
serial and parallel SPS-FC methods on different HSI datasets.
For HSI1 and HSI2, the parallel SPS-FC achieves speedups
of 5.72x and 6.61 x, respectively. For HSI3 and HSI4, since
the serial SPS-FC is incapable of handling HSI data of this
high volume, the runtime results are not presented. The results
in Fig. 6 also show that the parallel SPS-FC is scalable when
processing large-scale HSI datasets.

B. Evaluation of Scheduling-Guided Acceleration

Despite the promising improvement in computational effi-
ciency achieved by the parallel implementation on Spark,
it is worth emphasizing several issues that may limit the
full usage of the entire cloud system. On the one hand, the
precedence constraints among tasks may prevent the parallel
processing of multiple tasks, leading to low utilization of the
cloud system. For instance, if an indivisible task takes prece-
dence over a number of succeeding tasks on the DAG, all
its successors have to wait until the indivisible task has com-
pleted execution on a single PE and then start execution. Such
dependency on indivisible tasks may cause a long period of
system idle time and slow down task execution speed. On the
other hand, the execution speed of a divisible task is closely
dependent on its partitioning factor. As the partitioning factor
increases, a significant amount of communication overhead,
including MapReduce job initialization, synchronization, data
transmission, etc., would also be introduced.

We show that the total execution time of the parallel SPS-
FC flow can be further reduced by employing the proposed
scheduling strategies. In consistency with the scheduling
model in Section III, we use the concept of “makespan”
to denote the total time for executing the complete SPS-
FC flow. Specifically, we use the two scheduling algorithms,
SQEA and HQEA described in Section IV, to solve the
divisible scheduling problem formulated in (5)—(8), and eval-
uate the task execution times. Fig. 7 presents the makespans
obtained by SQEA and HQEA scheduling algorithms for dif-
ferent numbers of workers. The makespan of the parallel
implementation without using scheduling strategies is also
provided for comparison. We can observe that the consid-
ered scheduling strategies effectively reduce the makespan of
task execution by assigning appropriate partitioning factors
and mapping relations. Besides, the reduction in makespan
increases as the number of workers grows. When the worker
count reaches 64, the SQEA algorithm achieves an improve-
ment of 16.28% compared with the “no scheduling” case.
Moreover, by introducing the insertion-based search heuristic,

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: SCHEDULING-GUIDED AUTOMATIC PROCESSING OF MASSIVE HYPERSPECTRAL IMAGE CLASSIFICATION 11

®No Scheduling ®SQEA Scheduling ®HQEA Scheduling

80
75 728
704
70
— 65 b4
e 614
L 60 - %88 573
c 55.3
3 55
0 509 50.4
PR
[} 453 46.3
=
45 r 42.1
40 t
35
30 ‘ ‘ ‘
8 16 32 64

Number of Workers

Fig. 7. Makespans with and without using scheduling strategies with different
numbers of workers.

m No Scheduling ®SQEA Scheduling mHQEA Scheduling
1400

1241
1200 r
1070

1000 r
876

(o]
o
o

622

[o2]
o
o

495
447

Makespan (sec)

400 r

227 50
200 r
0

HSI1

HsI2
HSI Datasets

HSI3

Fig. 8. Makespans with and without using scheduling strategies for different
HSI datasets.

the HQEA algorithm further reduces the makespan by 9.01%,
resulting in a total makespan reduction of 23.82%.

We perform another set of experiments to verify the schedul-
ing results on HSI datasets of different sizes. Fig. 8 provides
the task execution makespans by using no scheduling, SQEA
scheduling, and HQEA scheduling strategies, respectively. All
makespan results are obtained by deploying 64 workers. The
results show that HQEA and SQEA algorithms outperform
the “no scheduling” case in terms of reduced task execution
makespans. For the large-scale datasets HSI1, HSI2, and HSI3,
makespan reductions ranging from 13.74% to 20.34% are
achieved by using the SQEA strategy, whereas the makespan
reductions achieved by the HQEA strategy range from 26.50%
to 29.39%. More importantly, the improvement in makespan
by the HQEA strategy is more stable than that by the SQEA
strategy as the HSI data volume varies.

Table III finally presents the classification accuracies by
using our cloud implementations under the guide of SQEA
and HQEA scheduling solutions for various HSI data sizes
and worker counts. The results show that with different

numbers of workers, the classification accuracies achieved by
the scheduling-guided algorithms are close to that achieved by
the serial method. The insignificant fluctuation in classification
accuracy with regard to worker count is introduced by the ran-
dom sampling procedure in SPS-FC flow. In addition, since the
large-scale datasets are generated by mosaicking the original
“University of Pavia” dataset, we observe no much difference
among the classification accuracies for HSI1, HSI2, and HSI3.

C. Evaluation of Extended Applicability

The divisible scheduling framework can be applied to other
HSI applications as long as we can represent the applica-
tion flow by a DAG and identify the divisible tasks. We
perform additional experiments by using a different HSI clas-
sification application and a different HSI dataset to fully
justify the applicability of the proposed scheduling-guided
approach. The classification application used for evaluation is
the SCSRC method that involves memory-consuming matrix
computations. The HSI dataset used in this set of experi-
ments is the well-known “Indian Pines” image, which is of
size 145 x 145 x 200. The configuration for the Spark cluster
is as follows. We deploy a master node on a host machine
equipped with a four-core Intel Xeon E5630 CPU and 16-GB
memory, and eight slave nodes on four IBM BladeCenter HX5
blade servers. Each slave node is assigned with a six-core Intel
Xeon E7-4807 CPU and 15-GB memory. We deploy multiple
workers on each slave node. The operating system and soft-
ware environment for all nodes are the same as in previous
experiments.

By analyzing the processing flow of the SCSRC method, we
notice that several matrix addition and multiplication opera-
tions involved in the classification procedure can be identified
as divisible tasks and can be performed in parallel on Spark.
We employ the proposed HQEA metaheuristic algorithm to
determine the optimal intertask and intratask parallelisms by
solving the divisible scheduling problem. We evaluate the
performance of the scheduling-guided approach, in terms of
classification accuracy, computational efficiency, and scalabil-
ity, as compared to the serial SCSRC method. By deploying
4, 8, 16, and 32 worker nodes, the classification accura-
cies obtained by using the HQEA algorithm achieve 98.26%,
98.32%, 98.23%, and 97.68%, respectively. Compared with the
serial method that leads to a classification accuracy of 98.28%,
the accuracy loss by using the scheduling-guided cloud imple-
mentation is less than 0.6%. The comparison results justify
that the parallel processing of divisible SCSRC tasks would
not affect the accuracy of HSI classification.

Similarly, as in previous experiments, we examine the com-
putational efficiency of the scheduling-guided approach by
varying the number of workers. As presented in Fig. 9, the
speedup over the serial SCSRC increases with more worker
nodes deployed on Spark and becomes less significant as the
worker count continues to grow. For instance, with four worker
nodes, the total execution time of the SCSRC method by using
the HQEA scheduling strategy is 907.04 s, indicating a 4.05x
speedup that is close to the number of workers. However, by
deploying eight worker nodes, the scheduling-guided approach

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS

TABLE III
CLASSIFICATION ACCURACIES BY USING SQEA AND HQEA ALGORITHMS

8 workers 16 workers 32 workers 64 workers
Datasets Serial
HQEA SQEA HQEA SQEA HQEA SQEA HQEA SQEA
HSI1 95.59% 95.58% 95.59% 95.58% 95.55% 95.60% 95.58% 95.57% 95.60%
HSI2 95.58% 95.56% 95.55% 95.57% 95.56% 95.58% 95.57% 95.59% 95.55%
HSI3 95.58% 95.59% 95.58% 95.60% 95.54% 95.57% 95.58% 95.57% 95.56%

Speedup

8 |
6 L
4 L
0 L L
4 8 16 32

Number of Workers

Fig. 9. Speedups over the serial SCSRC with different numbers of workers.

3200

2700 y =242.08x + 187.62

m
@ 200 |
[
£
= 1700
c
2
=
3 1200 f
o
x
w

700

200 L 1 . H 1

0 2 4 6 8 10 12
Data Size (GB)
Fig. 10. Execution times of the SCSRC method for different HSI datasets.

achieves a total execution time of 566.25 s and a speedup
of 6.49x. When the number of workers increases to 32, the
execution time has been reduced to 315.78 s and the corre-
sponding speedup is 11.62x. As analyzed previously, more
worker nodes would lead to a considerable amount of com-
munication overhead and in turn a nonlinear improvement in
computational efficiency.

In order to further validate the scalability of the scheduling-
guided algorithm, we conduct additional experiments on HSI
datasets of large sizes. We mosaick the original “Indian Pines”
image to generate large-scale HSI datasets, in which the vol-
ume of the intermediate data during the SCSRC classification
procedure ranges from 1.34 to 10.71 GB. We fix the number
of workers as 16 and implement the parallel processing of

the SCSRC on Spark guided by the HQEA scheduling results.
Fig. 10 provides the total execution times for different data
sizes. A linear regression analysis indicates that the increase in
execution time is proportional to the increase in dataset size.
Such a linear dependency also can be observed by fixing the
number of workers at other values. Therefore, we draw the con-
clusion that the proposed multiobjective scheduling algorithm
is scalable to the increasing volume of the HSI dataset.

VI. CONCLUSION

This article proposes a new scheduling-guided parallel pro-
cessing method for accelerating HSI classification techniques
on cloud computing architectures. Specifically, a new divis-
ible scheduling model for fully exploiting the intertask and
intratask parallelisms during the distributed processing of a
representative HSI classification method is developed. With a
limited number of computing resources, the proposed divisible
scheduling model takes into account both task assignments and
task partitioning factors as decision variables. We formulate
the divisible scheduling problem as an optimization frame-
work and further develop effective metaheuristics to solve it.
We use two HSI datasets and two representative classifica-
tion applications to justify the performance of the proposed
scheduling-guided approach, in items of classification accu-
racy, computational efficiency, and scalability to large-scale
HSI data.

The divisible scheduling model and algorithms in this work
can be easily adapted for other widely used HSI applica-
tions, for example, pan sharpening, spectral unmixing, and
target detection. As long as we can characterize the process-
ing flow of an HSI application by a DAG and identify the
divisible tasks on the DAG, the divisible scheduling model
can be formulated to minimize the execution time under the
resource constraint. By solving the formulated scheduling
problem using the proposed metaheuristic algorithms, an opti-
mized solution of task assignments and partitioning factors
can be obtained to accelerate the automatic processing of HSI
applications on clouds. As long as the application flow can
be divided into a set of subtasks with complicated precedence
relations and the computation load of certain tasks can be
partitioned and distributed across multiple PEs, our approach
would be effective in reducing the execution time on Spark by
determining the optimized intertask and intratask parallelisms.

REFERENCES

[1] C. Yu et al., “Hyperspectral image classification method based on CNN
architecture embedding with hashing semantic feature,” /EEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 6, pp. 1866-1881,
Jun. 2019.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: SCHEDULING-GUIDED AUTOMATIC PROCESSING OF MASSIVE HYPERSPECTRAL IMAGE CLASSIFICATION 13
. Zhang, Q. Zhang, B. Du, X. Huang, Y. Y. Tang, and D. Tao, . Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability modulo graph the-

[2] L. Zhang, Q. Zhang, B. Du, X. Huang, Y. Y. Tang, and D. T: [26] W.Liu, Z. Gu, J. Xu, X. W d Y. Ye, “Satisfiability modulo graph th
“Simultaneous spectral-spatial feature selection and extraction for ory for task mapping and scheduling on multiprocessor systems,” /EEE
hyperspectral images,” IEEE Trans. Cybern., vol. 48, no. 1, pp. 16-28, Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1382—1389, Aug. 2011.
Jan. 2018. [27] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative

[3] L. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, “Hyperspectral studies,” J. Stat. Phys., vol. 34, nos. 5-6, pp. 975-986, 1984.
remote sensing image subpixel target detection based on supervised [28] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int.
metric learning,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, Conf. Neural Netw., 2002, pp. 1942—1948.
pp. 4955-4965, Aug. 2014. [29] G. Zhang, “Quantum-inspired evolutionary algorithms: A survey and

[4] A. Zare, J. Bolton, J. Chanussot, and P. Gader, “Foreword to the spe- empirical study,” J. Heurist., vol. 17, no. 3, pp. 303-351, 2011.
cial issue on hyperspectral image and signal processing,” IEEE J. Sel. ~ [30] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, “Divisible load the-
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 1841-1843, ory: A new paradigm for load scheduling in distributed systems,” Clust.
Jun. 2014. Comput., vol. 6, no. 1, pp. 7-17, 2003.

[5] C. Ye et al., “Landslide detection of hyperspectral remote sensing data ~ [31] J. Jia, B. Veeravalli, and J. Weissman, “Scheduling multisource divisible
based on deep learning with constrains,” IEEE J. Sel. Topics Appl. Earth loads on arbitrary networks,” IEEE Trans. Parallel Distrib. Syst., vol. 21,
Observ. Remote Sens., vol. 12, no. 12, pp. 5047-5060, Dec. 2019. no. 4, pp. 520-531, Apr. 2010.

[6] T. Xie, S. Li, L. Fang, and L. Liu, “Tensor completion via non- [32] J. Haut, M. F:«::lolettl, “A. Paz-Gallardo, J. Plaza, A. Plaza, and
local low-rank regularization,” [EEE Trans. Cybern., vol. 49, no. 6, J. Vigo-Aguiar, “Cloud implementation of logistic regression for hyper-
pp. 2344-2354, Jun. 2019. spgctral image classification,” in Proc. Int. Conf. Comput. Math. Methods

[7] M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu, “Big Sci. Eng., 2017, pp-. 1963’2321~ . o
data for remote sensing: Challenges and opportunities.” Proc. IEEE, [33] R. Zaatqur, _S._Bouzldl, an(_i E. Zagrouba, “Parallel and_ distributed local
vol. 104, no. 11, pp. 2207-2219, Nov. 2016. fisher (i_lscrlmmgnt analzs%s to reduce hyperspectral images on clogd

[8] Z. Wu, Y. Li, A. Plaza, J. Li, F. Xiao, and Z. Wei, “Parallel and computing architectures,” in Proc. Int. Conf. Adv. Concepts Intell. Vis.
distributed dimensionality reduction of hyperspectral data on cloud com- Syst., 2018, pp. 245-257. . e .
puting architectures,” IEEE J. Sel. Topics Appl. Earth Observ. Remote [34] A A Gre?en, M. Berman, P. Sw1'tzer, and M',D' Craig, A tra{lsfqmlatlon
Sens., vol. 9, no. 6, pp. 22702278, Jun. 2016. fpr ordermg.multlspectra’l’l data in terms of image quality with implica-

[9] V. A. A. Quirita ef al., “A new cloud computing architecture for the tlons1 for noise iemovai, éEEE Trans. Geosci. Remote Sens., vol. 26,
classification of remote sensing data,” IEEE J. Sel. Topics Appl. Earth 35 Iﬁo'N’ g{p- 65;7]_1’ J;n' 98 d L 1 Xin. “T d . loorithm i
Observ. Remote Sens., vol. 10, no. 2, pp. 409-416, Feb. 2017. [35] L. N. Xun, Y. H. Fang, and L. I. Xin, "Target detection algorithm in

« . . hyperspectral image based on CEM,” Opto-Electron. Eng., vol. 34, no. 7,

[10] J. Sun et al, “An efficient and scalable framework for processing pp. 18-21, 2007
remotely se@sed big data in cloud computing environments,” [EEE [36] M-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate
Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 4294-4308, Jul. 2019. . o

“ o . superpixel segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on Recoonit.. Providence. RL USA. 2011 2097-2104
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008. gmit., s o U8, £UL0, PD: ' S

121 M. Zh W Li Do L G 4 B. Zh “F . [37] S. Ryza, U. Laserson, S. Owen, and J. Wills, Advanced Analytics With

[12] M. ang, W. L1, Q. Du, L. Gao, an D- Zhang, “Feature extraction Spark: Patterns for Learning From Data at Scale. Sebastopol, CA, USA:
for classification of hyperspectral and LiDAR data using patch-to-patch O’Reilly Media. 2015
CNN,” IEEE Trans. Cybern., vol. 50, no. 1, pp. 100-111, Jan. 2020 oy Med, -

’ o ” T T o EE > T [38] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-

[13] A. Plazg et”al‘, Recent advance§ in techniques for hyperspectral image tion for in-memory cluster computing,” in Proc. USENIX Conf. Netw.
processing,” Remote Sens. Environ., vol. 113, no. 1, pp. S110-S122, Syst. Design Implement., 2012, pp. 1-14.

2009. ') .)) [39] J. Sun, L. Yin, M. Zou, Y. Zhang, T. Zhang, and J. Zhou, “Makespan-

[14] Z. Wu, J. Liu, A. Plaza, J. Li, and Z. Wei, “GPU _1m13’lementatlon of minimization workflow scheduling for complex networks with social
composite kernels for hyperspectral image classification,” JEEE Geosci. groups in edge computing” J. Syst. Archit., vol. 108, Sep. 2020,
Remote Sens. Lett., vol. 12, no. 9, pp. 1973-1977, Sep. 2015. Art. no. 101799,

[15] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote [40] K.-H. Han and J.-H. Kim, “Quantum-inspired evolutionary algorithm
sensing images with support vector machines,” IEEE Trans. Geosci. for a class of combinatorial optimization,” I[EEE Trans. Evol. Comput.,
Remote Sens., vol. 42, no. 8,. pp. 1778-1790, Aug. 2004.) vol. 6, no. 6, pp. 580-593, Dec. 2002.

[16] G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt, “Spatlo-spectra.l [41] C. Y. Chung, H. Yu, and K. P. Wong, “An advanced quantum-inspired
remote sensing image classification with graph kernels,” JEEE Geosci. evolutionary algorithm for unit commitment,” [EEE Trans. Power Syst.,
Remote Sens. Lett., vol. 7, no. 4, pp. 741-745, Oct. 2010. vol. 26, no. 2, pp. 847-854, May 2011.

[17]1 Y. Gu, C. Wang, D. You, Y. Zhang, S. Wang, and Y. Zhang, [42] J. G. Vlachogiannis and K. Y. Lee, “Quantum-inspired evolutionary
“Representative multiple kernel learning for classification in hyper- algorithm for real and reactive power dispatch,” IEEE Trans. Power
spectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, Syst., vol. 23, no. 4, pp. 1627-1636, Nov. 2008.
pp. 2852-2865, Jul. 2012. [43] Z. Wu, Q. Wang, A. Plaza, J. Li, J. Liu, and Z. Wei, “Parallel imple-

[18] Y. Yuan, J. Lin, and Q. Wang, “Hyperspectral image classification via mentation of sparse representation classifiers for hyperspectral imagery
multitask joint sparse representation and stepwise MRF optimization,” on GPUSs,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8,
IEEE Trans. Cybern., vol. 46, no. 12, pp. 2966-2977, Dec. 2016. no. 6, pp. 2912-2925, Jun. 2015.

[19] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial hyperspectral ~ [44] J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction algo-
image segmentation using subspace multinomial logistic regression and rithms for constrained sparse regression: Application to hyperspectral
Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 50, unmixing,” in Proc. 2nd Workshop Hyperspectral Image Signal Process.
no. 3, pp. 809—823, Mar. 2012. Evol. Remote Sens., Reykjavik, Iceland, 2010, pp. 1-4.

[20] T. Lu, S. Li, L. Fang, X. Jia, and J. A. Benediktsson, “From subpixel to Zebin Wu (Senior Member, IEEE) received the
S}lpe’r’pixelz A novel fusior} framework for hyperspectral image classifica- B.Sc. and Ph.D. degrees in computer science and
tion,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 43984411, technology from the Nanjing University of Science
Aug. 2017. and Technology, Nanjing, China, in 2003 and 2007,

[21] F. Luo, D. Bo, L. Zhang, L. Zhang, and D. Tao, “Feature learning e :.: : respectively.
using spatial-spectral hypergraph discriminant analysis for hyperspectral ¢ E, From 2014 to 2015, he was a visiting scholar
image,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2406-2419, Jul. 2019. o with the Hyperspectral Computing Laboratory,

[22] Y. Zhou and Y. Wei, “Learning hierarchical spectral-spatial features for S Department of Technology of Computers and
hyperspectral image classification,” [EEE Trans. Cybern., vol. 46, no. 7, Rt} Communications, Escuela Politécnica, University
pp. 1667-1678, Jul. 2016. [of Extremadura, Caceres, Spain. He was a visit-

[23] Z. Wu, Q. Wang, A. Plaza, J. Li, L. Sun, and Z. Wei, “Parallel spatial— ing scholar with the Department of Mathematics,
spectral hyperspectral image classification with sparse representation University of California, Los Angeles, CA, USA, from August 2016 to
and Markov random fields on GPUSs,” IEEE J. Sel. Topics Appl. Earth September 2016. He was also a visiting scholar with the GIPSA-Lab, Grenoble
Observ. Remote Sens., vol. 8, no. 6, pp. 2926-2938, Jun. 2015. INP, Université Grenoble Alpes, Grenoble, France, in 2018. He is currently

[24] F. Magoules, J. Pan, and F. Teng, Cloud Computing: Data-Intensive a Professor with the School of Computer Science and Engineering, Nanjing
Computing and Scheduling. London, U.K.: Chapman Hall, 2012. University of Science and Technology. His research interests include hyper-

[25] H. El-Rewini, T. G. Lewis, and H. H. Ali, Task Scheduling in Parallel spectral image processing, parallel computing, and remotely sensed big data

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

and Distributed Systems. New York, NY, USA: Prentice-Hall, 2007.

processing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Jin Sun (Member, IEEE) received the B.S. and
M.S. degrees in computer science from the Nanjing
University of Science and Technology, Nanjing,
China, in 2004 and 2006, respectively, and the Ph.D.
degree in electrical and computer engineering from
the University of Arizona, Tucson, AZ, USA, in
2011.

From 2012 to 2014, he was with Orora Design
Technologies, Inc., as a Member of the Technical
Staff. He is currently an Associate Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology. His research interests include
high-performance computing and electronic design automation.

Yi Zhang received the B.S. and Ph.D. degrees in
computer science and engineering from Southeast
University, Nanjing, China, in 2005 and 2011,
respectively.

In 2009, he was an intern with the IBM China
Research Laboratory, Beijing, China, after he was
awarded the IBM Ph.D. Fellowship. In 2011,
he joined the Huawei Tech. Company, Shenzhen,
China, as a Member of the Technical Research
Staff. He is currently an Associate Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing. His research interests
include task scheduling and resource management in cloud computing and
mobile computing.

Yaoqin Zhu received the B.S. and Ph.D. degrees in
computer science and technology from the Nanjing
University of Science and Technology, Nanjing,
China, in 2000 and 2005, respectively.

She is currently an Assistant Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology. Her
research interests include multimedia processing,
virtual reality, and computer simulation.

Jun Li (Senior Member, IEEE) received the B.S.
degree in geographic information systems from
Hunan Normal University, Changsha, China, in
2004, the M.E. degree in remote sensing from
Peking University, Beijing, China, in 2007, and
the Ph.D. degree in electrical engineering from the
Instituto de Telecomunicagdes, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Lisbon,
Portugal, in 2011.

From 2011 to 2012, she was a Postdoctoral
Researcher with the Hyperspectral Computing
Laboratory, Department of Technology of Computers and Communications,
Escuela Politécnica, University of Extremadura, Céceres, Spain. She is cur-
rently a Professor with the School of Geography and Planning, Sun Yat-sen
University, Guangzhou, China. She has authored or coauthored a total of 69
journal citation report articles, 48 conference international conference articles,
and one book chapter. Her main research interests include remotely sensed
hyperspectral image analysis, signal processing, supervised/semisupervised
learning, and active learning.

Prof. Li has received a significant number of citations to her published
works, with several articles distinguished as Highly Cited articles in Thomson
Reuters” Web of Science-Essential Science Indicators.

IEEE TRANSACTIONS ON CYBERNETICS

Antonio Plaza (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer engineering from
the Department of Technology of Computers
and Communications, University of Extremadura,
Badajoz, Spain, in 1999 and 2002, respectively.

Hi is currently a Full Professor and the
Head of the Hyperspectral Computing Laboratory,
Department of Technology of Computers and
Communications, University of Extremadura. He
has authored more than 600 publications and guest
edited 10 journal special issues. He has reviewed
more than 500 manuscripts for over 50 different journals.

Prof. Plaza served as the Editor-in-Chief for the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING from 2013 to 2017. He is included the
Highly Cited Researchers List (Clarivate Analytics) from 2018 to 2019.

Jon Atli Benediktsson (Fellow, IEEE) received the
Cand.Sci. degree in electrical engineering from the
University of Iceland, Reykjavik, Iceland, in 1984,
and the M.S.E.E. and Ph.D. degrees in electrical
engineering from Purdue University, West Lafayette,
IN, USA, in 1987 and 1990, respectively.

In 2015, he became the President and Rector of
the University of Iceland. From 2009 to 2015, he was
the Pro Rector of Science and Academic Affairs and
a Professor of Electrical and Computer Engineering
with the University of Iceland, where he had been
a Faculty Member since 1991. His research interests are in remote sensing,
biomedical analysis of signals, pattern recognition, image processing, and sig-
nal processing, and he has been published extensively in those fields.

Dr. Benediktsson has received many recognitions for his research. He has
been a Web of Science Group Highly Cited Researcher since 2018. He was
the President of the IEEE Geoscience and Remote Sensing Society (GRSS)
from 2011 to 2012, and GRSS AdCom from 2000 to 2014. He was an
Editor-in-Chief of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE
SENSING from 2003 to 2008, and has served as an Associate Editor for IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING since 1999. He is
a Fellow of SPIE.

Zhihui Wei (Member, IEEE) received the B.Sc.
degree in applied mathematics, the M.Sc. degree in
applied mathematics, and the Ph.D. degree in com-
munication and information systems from Southeast
University, Nanjing, China, in 1983, 1986, and 2003,
respectively.

He is currently a Professor and Doctoral
Supervisor with the Nanjing University of Science
and Technology, Nanjing. His research interests
include partial differential equations, image process-
ing, multiscale analysis, sparse representation, and
compressed sensing.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on November 02,2020 at 10:28:56 UTC from IEEE Xplore. Restrictions apply.

