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Abstract— Due to the proliferation of large-scale remote-
sensing (RS) archives with multiple annotations, multilabel RS
scene classification and retrieval are becoming increasingly pop-
ular. Although some recent deep learning-based methods are
able to achieve promising results in this context, the lack of
research on how to learn embedding spaces under the multilabel
assumption often makes these models unable to preserve complex
semantic relations pervading aerial scenes, which is an important
limitation in RS applications. To fill this gap, we propose a
new graph relation network (GRN) for multilabel RS scene
categorization. Our GRN is able to model the relations between
samples (or scenes) by making use of a graph structure which
is fed into network learning. For this purpose, we define a new
loss function called scalable neighbor discriminative loss with
binary cross entropy (SNDL-BCE) that is able to embed the
graph structures through the networks more effectively. The
proposed approach can guide deep learning techniques (such as
convolutional neural networks) to a more discriminative metric
space, where semantically similar RS scenes are closely embedded
and dissimilar images are separated from a novel multilabel
viewpoint. To achieve this goal, our GRN jointly maximizes a
weighted leave-one-out K -nearest neighbors (KNN) score in the
training set, where the weight matrix describes the contributions
of the nearest neighbors associated with each RS image on its
class decision, and the likelihood of the class discrimination in
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the multilabel scenario. An extensive experimental comparison,
conducted on three multilabel RS scene data archives, validates
the effectiveness of the proposed GRN in terms of KNN classifi-
cation and image retrieval. The codes of this article will be made
publicly available for reproducible research in the community.

Index Terms— Deep learning, loss function, metric learning,
multilabel scene categorization, neighbor embedding, remote
sensing (RS).

I. INTRODUCTION

W ITH the constant development of satellite sensor
technology, remote-sensing (RS) images are widely

employed in numerous applications, such as urban map-
ping [1]–[5], object detection and recognition [6]–[10], image
processing and analysis [11]–[14], and spectral unmixing
[15]–[17]. RS scene classification and retrieval [18], [19] play
a crucial role in the aforementioned tasks, because they focus
on predicting the semantic content and visual understanding
associated with a given aerial scene [20].

During the last decades, extensive research has been con-
ducted on the development of RS scene categorization mod-
els [18], [21]–[29]. For example, in [30], the proposed method
can well integrate spatial information and efficiently extract
nonlinear features, and shows state-of-the-art classification
performance when there are limited training samples. The
majority of the presented methods aim at providing a single
interpretation of RS scenes, which are assumed to contain
only one land-use or land-cover semantic class [31]. However,
such hypothesis may not hold in RS problems, since it may
not be sufficient to characterize the high semantic complexity
of the RS image domain, especially when considering high-
resolution remotely sensed images [32]. To better describe
the objects within an aerial scene, multiple labels may be
required to represent the visual semantics of RS images.
In general, the multilabel image classification and retrieval
problem consists of predicting (or searching) semantically
related visual contents that contain multiple annotations,
providing a substantially richer semantic description of the
corresponding scenes. As a result, extensive efforts have
been recently directed toward investigating the multilabel
scheme [33]–[38]. For example, one of the primal multil-
abel methods proposed within the RS field was presented
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in [39] where the authors define a multilabel support vector
machine (SVM) for multilabel active learning. To simulta-
neously exploit the spatial-contextual information and the
correlation among the labels, Zeggada et al. [40] presented
a conditional random field (CRF) framework for multil-
abel classification of images collected by unmanned aerial
vehicles (UAVs).

Fostered by the fast proliferation of large-scale RS
archives [41]–[44], deep learning has also been applied to
multilabel RS scene categorization due to its excellent feature
extraction capabilities. Different works in the RS literature
exemplify this fact. For instance, Karalas et al. [45] developed
a sparse autoencoder framework to extract the underlying
semantic features from satellite images, to effectively retrieve
multilabel land-cover categories. Zeggada et al. [46] proposed
a deep learning model for predicting multilabels in UAV
images via a radial basis function (RBF) network applied on
the local image descriptors, which are then extracted using a
convolutional neural network (CNN). Despite the effectiveness
achieved by these and other relevant methods in the literature,
the standard CNN architecture is generally unable to exhibit
a salient performance in RS, due to the so-called Hughes
phenomenon that arises when considering limited amounts
of labeled images [47]. It is noted that the availability of
sufficient multilabeled images is a major problem in RS,
because obtaining (fine-grained) ground-truth annotations is
very expensive (as well as time-consuming). To overcome
this important constraint, a data augmentation technique was
recently proposed in [48] to enlarge available multilabel RS
training sets. Nonetheless, other authors opt for different
alternatives instead. It is the case of Hua et al. [49], who
proposed an end-to-end network for multilabel aerial image
classification which is based on three components: a CNN-
based feature extraction module, a class-wise attention mech-
anism, and a bidirectional long short-term memory (LSTM)
subnetwork. Driven by multiattention techniques, Sumbul and
Demir [50] also designed a CNN-based deep learning system
for RS images with multiple annotations. Alshehri et al. [51]
presented a multilabel categorization approach based on an
encoder–decoder neural network with pretrained CNN features
and channel-spatial attention. Additionally, Shao et al. [52]
proposed a multilabel RS image retrieval system that employs
a fully convolutional network which is first trained to predict
the corresponding segmentation maps and then used to char-
acterize each individual region with multiscale features.

Most of the existing deep learning methods in multil-
abel RS scene classification and retrieval domains focus on
designing suitable CNN architectures to improve the label
assignment performance, given the high semantic complex-
ity of the RS image domain. However, the learned feature
embeddings for aerial images have not been fully inves-
tigated yet. Precisely, this is the gap that motivates this
research work. In other words, despite the fact that some
of the above-mentioned approaches already exhibit remark-
able performances on multilabel categorization problems, their
corresponding low-dimensional feature embeddings may not
fully preserve the semantic relations pervading the objects in
RS scenes, where semantically similar images are logically

expected to be close in the uncovered feature space. Although
one may think that such metric space could be produced by
applying the standard contrastive loss or triplet loss [53], these
techniques were initially designed for a single-label scene
classification scheme, which may eventually constrain their
performance from a multilabel RS image analysis perspective.

In this article, we deal with the multilabel RS scene classifi-
cation and retrieval problem by taking the characteristics of the
learned CNN-based feature embeddings into account. Specif-
ically, we propose a new graph relation network (GRN) for
effectively classifying and retrieving RS scenes with multiple
annotations using a new loss function called scalable neighbor
discriminative loss (SNDL). Inspired by the scalable neighbor-
hood component analysis (SNCA) [54], the proposed SNDL
provides a novel perspective on the multilabel RS scene case
through the ability to learn a metric space where semantically
similar RS images are pulled closer (and dissimilar images
are pushed away) based on their multilabel semantic contents.
Specifically, we model the semantic proximity of the learned
CNN-based feature embeddings using a stochastic process
that maximizes a weighted leave-one-out k-nearest neighbors
(K NN) [55] score in the training set, where the weight matrix
obtained by the multilabel information characterizes the contri-
butions of the nearest neighbors associated with each image on
its semantic class decision. To further improve the multilabel
discrimination capability over RS scenes, we also design a
joint loss function, termed as SNDL-BCE, by combining
SNDL with binary cross entropy (BCE). The experimental part
of the work validates the performance of the proposed scheme
by conducting a comprehensive experimental comparison,
using three benchmark data archives and different state-of-the-
art models in multilabel RS scene classification and retrieval.
In summary, the main contributions of this article can be
highlighted as follows.

1) We develop a new GRN for multilabel RS scene classifi-
cation and retrieval by introducing an advanced scheme
based on a new loss function (SNDL) and its correspond-
ing joint version (SNDL-BCE). The new loss functions
have been proven to be effective in guiding CNN models
to produce a more discriminative metric space, both
instantly and class-wisely.

2) To the best of our knowledge, this is the first work in
the literature that considers graph-based neighborhood
semantic relationships between multilabel RS scene
images in an end-to-end deep neural network and adapts
the SNCA to the multilabel scheme.

3) The proposed GRN demonstrates its superiority with
respect to state-of-the-art loss functions, such as BCE
and log-sum-exp pairwise (LSEP) [56], that have been
widely used in multilabel RS scene classification and
retrieval tasks.

4) The proposed GRN also shows a higher effectiveness
and robustness when considering different benchmark
RS data sets and backbone CNN architectures. The
related codes of this article will be made publicly avail-
able for reproducible research inside the community1.

1https://github.com/jiankang1991
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The rest of this article is organized as follows. Section II
provides the rationale and details of the proposed approach,
and introduces our newly defined loss and optimization frame-
works. Section III presents and discusses the quantitative and
qualitative experimental results based on two different RS
tasks: classification and image retrieval. Finally, Section IV
concludes this article with some remarks and hints at plausible
future research lines.

II. METHODOLOGY

Let X = {x1, . . . , xN } be a set of N RS images and Y =
{y1, . . . , yN } be the associated set of label vectors, where each
label vector yi is represented by a multiclass hot encoding
vector, that is yi ∈ {−1, 1}C . Let C be the total number of RS
classes. If an image scene is assigned to the class c, the c-th
element of yi is 1, and −1 otherwise. F(·; θ) is the nonlinear
mapping function represented by a backbone CNN model with
a parameter set θ , which can map the original RS image xi into
a corresponding feature embedding fi ∈ R

D on the unit sphere,
that is �fi�2 = 1. A training set T (extracted from X ) is
built to train the proposed deep metric learning system. Based
on this notation, we first analyze the SNCA in Section II-A.
Then, in Section II-B we provide the technical details of our
approach, which is specially designed for multilabel RS scene
image classification and retrieval.

A. Scalable Neighborhood Component Analysis

As a scalable version of the standard neighborhood com-
ponent analysis [57], the SNCA [54] was introduced to effec-
tively learn a metric space based on CNN models, where the
neighborhood structure of original images can be preserved.
In other words, semantically similar images are projected to
the learned metric space with smaller distances, and dissimilar
images are separated [58]. The similarity si j between an image
pair (xi , x j ) from a training set T can be measured by the
cosine similarity, based on their feature embeddings in the
metric space

si j = fT
i f j (1)

where si j ranges from −1 to 1. A larger value of si j indicates
a higher similarity of the two images. Given the image xi ,
the probability pi j that the image x j is located around its
neighborhood in the metric space can be defined as

pi j = exp
�
si j/σ

�
�

k �=i exp(sik/σ)
, pii = 0 (2)

where σ is a temperature parameter controlling the concen-
tration level of the sample distribution [59], [60]. If si j is
larger, x j can be chosen as the neighbor of xi in the metric
space at a higher chance than another image xk . pii = 0
indicates that each image cannot select itself as its neighbor.
It is also termed as leave-one-out distribution on T . Based on
this, the probability that xi can be correctly classified is

pi =
�
j∈�i

pi j (3)

where �i = { j |yi = y j} is the index set of training images
sharing the same class with xi . Basically, the more images x j

(sharing the same class with xi ) that are positioned as neigh-
bors around xi in the metric space, the higher the probability
pi that xi is correctly classified. To this end, the objective
of SNCA is to minimize the expected negative log-likelihood
over T , represented as

LSNCA = − 1

|T |
�

i

log(pi) (4)

where |T | represents the number of training images.
Given xi , its similarities with respect to the other images in

the data set should be calculated for optimizing (4). Therefore,
to stochastically train a CNN model by LSNCA, an off-line
memory bank B is constructed for conducting the look-
up during the training phase, which ultimately stores the
normalized features of T , i.e., B = {fi , . . . , fM }. B is updated
in each iteration during the training phase.

The SNCA loss in (4) can be viewed as a way to learn
the nearest neighbors of each image in the metric space in
supervised fashion. Within the learned metric space, the inher-
ent structures among the images can be discovered, especially
when there are relevant intraclass variations. This is a highly
desired scenario when dealing with the particular semantic
complexity of aerial scenes. However, (4) is specially designed
for learning the feature embeddings of images with single
labels, which eventually becomes a very important constraint
in the RS field. Although convenient, the SNCA approach
cannot be applied to classify and retrieve RS images with
multiple semantic annotations. To solve this issue, we present
a novel multilabel deep metric learning approach, based on
a newly defined GRN-SNDL concept, to effectively learn a
metric space for RS images with multilabel information.

B. Proposed Multilabel Deep Metric Learning
Framework for RS Images

Our newly proposed end-to-end multilabel deep metric
learning model for RS scene classification and retrieval can
be condensed into three main components.

1) A backbone CNN model (used to generate the cor-
responding feature embedding space of the input RS
scene images). In this work, we adopt three state-of-
the-art backbone architectures to derive and validate the
proposed approach under different conditions, that is
ResNet18 [61], ResNet50 [61] and WideResNet50 [62].

2) A new loss function and its joint version, that is the
GRN-SNDL and GRN-SNDL-BCE, which model the
semantic proximity of the learned feature embeddings
by maximizing a weighted leave-one-out K NN score
and preserves the capability of class discrimination.

3) The corresponding optimization algorithm, which learns
the proposed model parameters using a stochastic
process based on an off-line memory bank.

Fig. 1 provides a graphical illustration of our multilabel deep
metric learning framework. In the following, our newly defined
loss function and the considered optimization algorithm are
described in detail.
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Fig. 1. Proposed framework for multilabel deep metric learning. The SNDL loss is targeted for pulling in the images that share more common labels and
pushing away the images with less or no common labels. The BCE loss is integrated for further improving the class discrimination capability.

1) Loss Function: Scalable Neighbor Discriminative Loss:
To design our GRN-SNDL under a multilabel assumption,
we first rewrite the probability pi that xi can be correctly
classified within the framework of SNCA [i.e., (3)] as

pi =
�

j

��i ( j)pi j (5)

where ��i ( j) is an indicator function given by

��i ( j) :=
�

1 if j ∈ �i ,

0 if j /∈ �i .
(6)

Given the index set (�i ) of training images sharing the same
class with respect to xi , the indicator function controls which
images can be positioned as neighbors around xi in the metric
space. It can be observed that pi is given by a weighted
summation of pi j over the whole data set. If x j shares the same
class with xi , the associated weight is 1 (and 0 otherwise).
In other words, all the contributions on the final class decision
of xi are dependent on the images that exhibit the same
semantic annotation.

Inspired by this idea, for those images with multilabel
annotations, the probability that xi is correctly classified can
be determined by

pi =
�

j

wi j pi j (7)

where wi j denotes the contribution weight associated with pi j .
Given an image xi and its multiple labels, we would like to
pull in the images that share more common labels with regard
to xi in the metric space, and push away the images with less
or no common labels with regard to xi . To achieve this goal,
a heavier weight wi j should be allocated to an image pair
(i, j) if the associated images have many labels in common,
so that pi j can contribute more to the multilabel decision
for xi through (7). For that purpose, we propose to calculate
wi j based on the multilabel information in the corresponding
images as follows:

wi j = �yi , y j� + C

2C
, wi j ∈ [0, 1]. (8)

Fig. 2. (a) Weight matrix W of the aerial image data set (AID). Darker points
indicate smaller weights assigned to image pairs (and vice versa). (b) Graph
perspective view of the GRN-SNDL loss.

Intuitively, wi j depends on the inner product between yi

and y j , which is the cosine between yi and y j . If yi is more
similar to y j , there will be a heavier weight assigned to the
similarity term si j between xi and x j . Since the original range
of �yi , y j � is from −C to C , we should normalize in the range
from 0 to 1 via (8). As an example, based on the multilabel
annotations of the AID data set [19], we utilize (8) to calculate
the weight matrix W, and plot it in Fig. 2(a), where the
x and y axes represent the indexes of the images. The darker
points indicate smaller weights assigned to image pairs (and
vice-versa). To this end, the overall objective function is based
on minimizing the expected negative log-likelihood through T
with the following formulation, termed as GRN-SNDL loss:

LSNDL = − 1

|T |
�

i

log(pi) = − 1

|T |
�

i

log

⎛
⎝�

j

wi j pi j

⎞
⎠.

(9)

From a graph perspective, GRN-SNDL can be considered
as a graph regularization, as it describes the relations between
the scenes based on their semantic multilabels. In the example
shown in Fig. 2(b), the connection between nodes 1 and 2
should be stronger than any other node linked with node 1,
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Fig. 3. Illustration of our learning scheme based on GRN-SNDL. Blue points
represent features (associated with images) in the metric space. With respect
to the center point, the other points have different numbers of identical class
labels, and this determines their position in the metric space after training
with GRN-SNDL. Specifically, the points associated with images with more
labels in common have been dragged closer than the points associated with
images with less common labels (with respect to the center point).

since they share more common labels. By constructing such
graph regularization based on their label information, the local-
ity structure can be better discovered within the feature space.

An illustration of the learning scheme of the proposed
GRN-SNDL is also given in Fig. 3. Blue points represent
features (associated with images) in the metric space. With
respect to the center point, the other points have different
numbers of identical class labels, which are indicated by
different colors. After training with GRN-SNDL, the points
associated with images with more labels in common have been
dragged closer than the points associated with images with less
common labels (with respect to the center point).

The proposed GRN-SNDL loss can be more beneficial to
model the local geometry in the feature space, while the
class-discrimination capability may not be well preserved.
Following our previous work [63], we introduce another loss
term based on BCE to further improve the performance of
class discrimination. The definition of BCE loss is given by:
LBCE=−

�
i

�
c

�yi (c) log
�

pc
i

�−�1− �yi (c)
�

log
�
1− pc

i

�
(10)

where pc
i measures the likelihood of the existence of label c,

�yi (c) indicates whether the class c is annotated or not. If the
class c is annotated, the cth element of yi is set as 1 (and as
0 otherwise). To this end, we jointly optimize the following
loss function:

L = LSNDL + LBCE. (11)

2) Optimization Algorithm: The optimization of the BCE
loss can be conducted by the standard back-propagation. For
optimizing the GRN-SNDL loss, we first calculate the gradient
with respect to fi as indicated in the following equation based
on the chain rule:

∂LSNDL

∂fi
= 1

σ

�
k

pikfk − 1

σ

�
k

wik p̃ikfk (12)

where p̃ik = pik/
�

j wi j pi j is the normalized distribution.
It can be seen that the feature embeddings of the entire training
set are required for the optimization. If we assume that B is
up-to-date during training, the gradient of the loss function

with respect to fi at the (t + 1)th iteration is

∂LSNDL

∂fi
= 1

σ

�
k

pikf (t)
k −

1

σ

�
k

wik p̃ikf (t)
k . (13)

Then, θ can be learned by exploiting the back-propagation
algorithm as follows:

∂LSNDL

∂θ
= ∂LSNDL

∂fi
× ∂fi

∂θ
. (14)

With the feature embeddings fi obtained for the current
mini-batch and B, we can now update fi as

f (t+1)
i ← mf (t)

i + (1− m)fi (15)

where f (t)
i denotes the historical feature embeddings stored in

B, and m is a regularization parameter for updating fi based on
the empirical weighted average. As described in (15), only the
feature embeddings associated with the current mini-batch are
updated within the current iteration. The optimization scheme
is described in Algorithm 1.

Algorithm 1 Optimization Scheme for GRN
Require: Training images xi , the weight matrix W, and the

multilabel annotations yi

1: Randomly initialize the parameters θ of CNN model, and
the memory bank B, as well as the the temperature para-
meter σ , the dimensionality D, and the regularization
parameter m.

2: for The epoch number t = 0 to maxEpoch do
3: Sample a mini-batch.
4: Obtain the normalized features f (t)

i based on the CNN
model with θ(t).

5: Calculate the similarities si j with reference to B.
6: Calculate the weights wi j based on Equation (8).
7: Calculate the gradients of SNDL based on Equation (13)

(and the ones of BCE).
8: Back-propagate the gradients.
9: Update the feature embeddings of the current mini-batch

stored in B via Equation (15).
10: end for
Ensure: θ , B

III. EXPERIMENTS

A. Data Set Description

In this article, three challenging multilabel RS image data
sets are utilized to validate the performance of the proposed
method. A detailed description of the considered data sets is
provided below.

1) UC Merced (UCM) Multilabel Data Set [64]: This data
set is recreated from the original UCM data set [65] by
relabeling all the 2100 aerial images of 256× 256 pixels
with multiple semantic annotations. The original UCM
data set consists of 21 scene classes, and each class
contains 100 images. The newly defined labels are
17 object classes: airplane, sand, pavement, building, car
chaparral, court, tree, dock, tank, water, grass, mobile
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Fig. 4. Examples of the UCM multilabel data set. (a) Bare-soil, buildings,
grass. (b) Pavement, sand, sea. (c) Buildings, cars, grass, pavement. (d) Bare-
soil, buildings, cars, pavement, trees. (e) Cars, grass, pavement. (f) Bare-soil,
grass, pavement, sand, trees. (g) Dock, ship, water. (h) Bare-soil, buildings,
cars, grass, pavement, trees.

Fig. 5. Examples of the AID multilabel data set. (a) Airplane, bare-
soil, buildings, cars, grass, pavement. (b) Bare-soil, buildings, cars, grass,
pavement, trees. (c) Bare-soil, buildings, grass, pavement, trees. (d) Chaparral,
sand, sea. (e) Buildings, cars, dock, pavement, ship, trees, water. (f) Bare-soil,
buildings, car, grass, pavement, trees. (g) Buildings, cars, pavement. (h) Bare-
soil, buildings, cars, grass, pavement, trees.

home, ship, bare soil, sea, and field. Fig. 4 illustrates
some multilabel examples from this data set.

2) Aerial Image Database (AID) Multilabel Data Set [66]:
This data set is built upon the original AID data set [19],
which is specially dedicated to aerial image classifica-
tion. The original AID data set consists of 10 000 RGB
images belonging to 30 scene classes. The number of
images per class ranges from 220 to 420, and the spatial
resolution varies from 0.5 to 8 m; 3000 aerial images
are selected to construct the AID multilabel data set.
The newly defined labels are the same as those in the
UCM multilabel data set. Some examples of multilabel
annotations are given in Fig. 5.

3) DFC15 Multilabel Data Set [66]: This data set is
created from a semantic segmentation data set called
DFC152 and acquired over Zeebrugge, Belgium, using
an airborne sensor with spatial resolution of 5 cm.

22015 IEEE GRSS data fusion contest. http://www.grss-ieee.org/community/
technical-committees/data-fusion/2015-ieee-grss-data-fusion-contest/

Fig. 6. Examples of the DFC15 multilabel data set. (a) Impervious, water,
clutter. (b) Impervious, clutter. (c) Impervious, building, car. (d) Impervious,
clutter. (e) Impervious, clutter, vegetation. (f) Water, clutter. (g) Impervious,
water, clutter. (h) Impervious, building, car.

The DFC15 multilabel data set consists of 3342 images
and there are eight object classes: impervious, water,
clutter, vegetation, building, tree, boat, and car. Fig. 6
displays some images with the associated multilabels.

B. Experimental Setup

The effectiveness of the proposed approach to categorize
multilabel RS scene images is evaluated on two different tasks:
1) image classification and 2) image retrieval. The following
sections describe in detail the experimental setup considered
for each task.

1) Multilabel RS Image Classification: For an out-of-
sample image x∗, its feature embedding f∗ can be obtained by
applying F(·) with the learned parameter set θ . Its predicted
label vector y∗ can be determined by thresholding the mean
average of the label vectors of its K NNs in B using the
value 0.5. We exploit four metrics to evaluate the classification
performance, including: 1) sample F1 score (F1

s ); 2) sample F2
score (F2

s ); 3) sample precision (Ps); and 4) sample recall (Rs ).
Specifically, the sample F1 and F2 scores are defined as

Fb
s =

�
1+ b2

� Ps Rs

b2 Ps + Rs
, b = 1, 2 (16)

where Ps and Rs are the sample-based precision and recall,
respectively. They are calculated based on

Ps = TPs

TPs + FPs
, Rs = TPs

TPs + FNs
(17)

where TPs , FPs , and FNs are the sample-based true positives,
false positives, and false negatives, respectively.

2) Multilabel RS Image Retrieval: Image retrieval aims to
find the most semantically similar images in the data set, based
on the distances calculated on their feature embeddings with
respect to those of a query image. Given such query image,
a more effective metric learning method can lead to more rele-
vant images retrieved from the data set. Under a multilabel RS
scheme, we evaluate the image retrieval quality based on three
metrics: 1) weighted mean average precision (WMAP) [67];
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2) mean average precision (MAP) [68], [69]; and 3) hamming
loss (HL). To be specific, WMAP is calculated as

WMAP = 1

|Q|
|Q|�
q=1

�
1

NRel(q)@R

R�
r=1

(δ(q, r)× ACG@r)

�

(18)

where Q denotes the query set, R represents the number of
inspected images from the top-ranking, NRel (q)@R indicates
the total number of relevant images (with respect to the query
image xq) within the top R retrieved images, δ(q, r) is an
indicator function that indicates whether the r th retrieved
image from the top-ranking is truly relevant to the query
image xq (i.e., if there is at least one common class annotated
to both images xq and xr , δ(q, r) is set to 1 [relevant] and
0 [non-relevant] otherwise) and ACG@r denotes the average
cumulative gains (ACGs) [70] score of the first r retrieved
images, which is defined as

ACG@r = 1

r

r�
i

Sim(q, i). (19)

Here, Sim(q, i) is the number of shared labels between image
xq and image xi , and MAP is the mean of the average precision
for each query image, defined by

MAP = 1

|Q|
|Q|�
q=1

AP(q) (20)

where

AP(q) = 1

NRel (q)@R

R�
r=1


δ(q, r)× NRel (q)@r

r

�
. (21)

HL evaluates the fraction of labels that are incorrectly
predicted, which is given by

HL(y, ŷ) = 1

C

�
c

δ(ŷc �= yc) (22)

where ŷ is the predicted label vector and ŷc denotes its cth
element.

We randomly select 70% of the images for training, 10% for
validation and 20% for testing from the three benchmark data
sets. For image retrieval purposes, the test set is utilized as
the query set, and the relevant images are retrieved from
the training set. The proposed method is implemented in
PyTorch. All the images are resized to 256× 256 pixels, and
three data augmentation strategies are adopted during training:
1) RandomGrayscale; 2) ColorJitter; and 3) RandomHorizon-
talFlip. The parameters D, σ , and m are set to 128, 0.1,
and 0.5, respectively. The stochastic gradient descent (SGD)
optimizer is employed for training the CNN model with an
initial learning rate set to 0.01, which is decayed by 0.5
every 30 epochs. The batch size is set to 256, and we train
the CNN model for 100 epochs. To validate the effective-
ness of the proposed framework for multilabel deep metric
learning, we compare it with: 1) BCE loss [46], [48], [71];
2) contrastive loss [53], [72]; and 3) LSEP loss [56].
Additionally, we test several prevalent backbone architectures

Fig. 7. Learning curves obtained after training ResNet18 with Contrastive,
BCE, LSEP, GRN-SNDL, and GRN-SNDL-BCE losses on the AID multilabel
data set. We display F1

s (%) in the validation set as a function of the number
of training epochs.

in RS: 1) ResNet18 [61]; 2) ResNet50 [61]; and 3) WideRes-
Net50 [62]. For optimizing other loss functions, the asso-
ciated learning rates are selected based on cross-validation.
To construct image pairs with multilabel annotations for the
contrastive loss, we consider the image pairs sharing at least
one common label as positive pairs, and the other pairs
(without any labels in common) as negative pairs. It is worth
noting that the multilabel information of the DFC15 data set is
not appropriate to construct pairwise labels for the contrastive
loss. Thus, the experiments of the contrastive loss on the
DFC15 data set are omitted here. All the experiments have
been conducted on an NVIDIA Tesla P100 GPU.

C. Experimental Results

1) Multilabel RS Image Classification: Fig. 7 shows
the learning curves obtained for ResNet18, optimized with
the considered losses (including Contrastive, BCE, LSEP,
GRN-SNDL, and GRN-SNDL-BCE) on the AID data set.
Using the K NN classifier with K = 10, we calculate the sam-
ple F1 scores (%) on the validation set and plot them versus
the number of training epochs. It can be seen that, in the first
20 epochs, ResNet18 trained with the BCE and LSEP losses
achieve higher classification accuracies than both GRN-SNDL
and GRN-SNDL-BCE. However, the performances of the BCE
and LSEP losses are relatively stable during the whole training
phase. This fact indicates that the effectiveness of the metric
learning based on these two losses is less obvious than the
proposed losses. Moreover, as the learning curves converge,
better K NN classification results can be obtained when we
use the GRN-SNDL-BCE loss (instead of the other losses)
for optimization.

To visualize the learned feature embeddings in the metric
space, we exploit t-distributed stochastic neighbor embed-
ding (t-SNE) to visualize their projections on a 2-D plane.
Fig. 8(a)–(d) shows the t-SNE scatter plots of the feature
embeddings in the UCM training set, obtained using BCE,
GRN-SNDL, LSEP, and GRN-SNDL-BCE with WideRes-
Net50, respectively. As we can observe, the proposed method
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Fig. 8. 2-D projection of the feature embeddings on the UCM training set using t-SNE. (a) WideResNet50-BCE. (b) WideResNet50-GRN-SNDL.
(c) WideResNet50-LSEP. (d) WideResNet50-GRN-SNDL-BCE.

TABLE I

K NN CLASSIFICATION PERFORMANCES OBTAINED BY DIFFERENT CNN MODELS OPTIMIZED WITH CONTRASTIVE, BCE, LSEP, GRN-SNDL,
AND GRN-SNDL-BCE LOSSES ON THE TEST SETS. THE PERFORMANCES ARE EVALUATED USING

FOUR DIFFERENT METRICS: F1
s , F2

s , Ps , AND Rs (%)

is able to uncover a remarkably finer-grained neighborhood
structure by comparing Fig. 8(a) and (b). This is because, with
the proposed GRN-SNDL, those images that are semantically
similar tend to be grouped together, while dissimilar RS scenes
are farther separated than with the BCE loss. By jointly using
the SNDL and BCE losses, the class-discrimination capability
can be further improved with respect to GRN-SNDL. It can
be seen that the mixed group of images shown in Fig. 8(b)
can be separated farther away in Fig. 8(d). Moreover, within
some groups, the images are located closer in Fig. 8(d) than
Fig. 8(c). That is to say, the proposed GRN-SNDL-BCE
loss can both discover the locality structure of the images
in the metric space and preserve the class-discrimination
capability.

Table I illustrates the performance of all the CNN models
(trained with all the considered losses) on the test sets of
the three considered benchmark data sets. All the results are
based on a K NN classifier with K = 10. It can be observed
that the performance achieved by the proposed GRN-SNDL-
BCE on the three data sets is generally better than the one
achieved by the other compared losses. For example, the sam-
ple F1 score of ResNet18-GRN-SNDL-BCE exhibits around
1% and 2% performance improvements over ResNet18-LSEP
and ResNet18-BCE, respectively, on the UCM data set. Based
on the ResNet50 model, the BCE loss can achieve the

comparable classification performance with respect to the
GRN-SNDL-BCE loss with the ResNet18 model.

Moreover, as the CNN model becomes deeper and wider,
the classification accuracies obtained by all the losses improve.
As the BCE loss is optimized for aligning all the images from
each category to each parameterized prototype, the ability to
capture the relationships among the images is lacking. Thus,
the BCE loss cannot sufficiently learn the metric space, where
semantically similar images need to be grouped together.
In contrast, the proposed method can effectively model the
relationships among all the RS images by constructing a
weight matrix based on their multilabel information. If two
images have multiple classes in common, their similarity
metric is granted with a heavier weight. By optimizing the
associated GRN-SNDL loss, a metric space can be learned
through training, and images with more common classes
are pulled closer. Therefore, the proposed loss can better
discover their inherent locality structures of the images within
the metric space, which leads to better K NN classification
performance.

Table II illustrates some predicted examples using the
WideResNet50 model optimized by the GRN-SNDL-BCE
loss. It can be seen that most classes can be correctly classified,
while there are still some false positive and false negative
predictions (marked in red and blue, respectively). For the
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TABLE II

SOME K NN CLASSIFICATION EXAMPLES ASSOCIATED WITH THE GROUND-TRUTH AND THE PREDICTED LABELS.
THE FALSE POSITIVES ARE MARKED IN RED, AND THE FALSE NEGATIVES ARE MARKED IN BLUE

third image in the UCM data set, grass is a false positive (due
to its analogous appearance with regard to court). Similarly,
trees is also positively predicted in the third image of the

AID data set, since the pattern of grass on its upper-leftmost
corner is analogous with trees. Water is not successfully
distinguished in the fourth image of the AID data set, since
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TABLE III

IMAGE RETRIEVAL PERFORMANCES OBTAINED BY DIFFERENT CNN MODELS OPTIMIZED VIA THE CONTRASTIVE, BCE, LSEP, GRN-SNDL, AND
GRN-SNDL-BCE LOSSES ON THE TEST SETS. THE PERFORMANCES ARE EVALUATED WITH THE METRICS: WMAP, MAP (%), AND HL

its RGB spectral values are close to those of grass in the same
image.

2) Multilabel RS Image Retrieval: Table III presents the
quantitative retrieval results obtained by different CNN mod-
els, trained with all the losses. Consistently with the K NN
classification results, our GRN-SNDL demonstrates its supe-
riority over the BCE loss on all the considered CNN models.
For example, with ResNet18, the MAP score obtained using
the GRN-SNDL loss is higher than that obtained by the
BCE loss, with an improvement of more than 1%. This
fact indicates that, in the learned metric space based on the
proposed GRN-SNDL, more relevant images (or images with
more common labels with regard to the query image) can
be retrieved (as compared to the metric space produced by
the BCE). When focusing on LSEP, GRN-SNDL-BCE is
also able achieve higher retrieval performances on all the
benchmark data sets. To improve multilabel classification
accuracy, LSEP is targeted at minimizing the produced label
confidence scores in a pairwise manner, where the the scores
of the true labels should be greater than those of the negative
labels. However, the feature emebddings from images with
multiple annotations are not directly considered in the LSEP
loss. In other words, the feature embeddings of the images
sharing more common annotations should be logically closer
than the others in the feature space; however, this aspect is
not directly optimized in LSEP. In contrast, the proposed loss
functions are able to exploit this property throughout a novel
GRN, which is eventually able to provide superior retrieval
results than LSEP. Moreover, the GRN-SNDL-BCE loss can
generally achieve the best performance in terms of image
retrieval with all the considered CNN models.

Fig. 9 shows the top 5 retrieved images based on ResNet50-
LSEP and ResNet50-GRN-SNDL-BCE with respect to the
associated query images, where Fig. 9(a), (d), and (g) are
the query images from the UCM, AID and DFC15 multilabel
data sets, respectively, Fig. 9(b), (e), and (h) are the retrieved
images based on ResNet50-LSEP, and Fig. 9(c), (f), and (i)

TABLE IV

SENSITIVITY ANALYSIS OF PARAMETER D IN THE PROPOSED MODEL

(GRN-SNDL) BASED ON THE F1
s (%) OF THE

K NN CLASSIFICATION

are the retrieved images based on ResNet50-GRN-SNDL-
BCE. Although there are some common classes between the
retrieved images and the query images in all the results,
ResNet50-GRN-SNDL-BCE can capture the images with
more relevant classes as the nearest neighbors to the query
image. Moreover, by measuring the relationship among the
images during the training, ResNet50-GRN-SNDL-BCE can
order the nearest neighbors with respect to the query image
better than ResNet18-LSEP, where the images sharing more
identical classes with the query image have the higher priority
to be retrieved first.

3) Parameter Sensitivity Analysis: D and σ are the two
main parameters of the proposed framework. With ResNet18,
in Table IV we calculate the F1

s (%) of the K NN classification
results on the test sets (for the three considered data sets)
with respect to varying values of D, setting K = 10. It can
be observed that the performances obtained using different
values of D are stable on all the considered data sets. In other
words, the proposed GRN-SNDL loss is robust to the use of
different dimensional sizes of the learned feature embeddings.
This characteristic is greatly beneficial for developing image
classification or retrieval systems on scalable RS archives,
where the storage space of the feature embeddings needs to
be optimized.

Using the same settings adopted to report the results
in Table IV, Table V shows a sensitivity analysis of
GRN-SNDL in terms of parameter σ , with a range from
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Fig. 9. Image retrieval examples based on ResNet50-LSEP and ResNet50-GRN-SNDL-BCE. (a), (d), and (g) Query images from UCM, AID, and DFC15 data
sets, respectively. (b), (e), and (h) Top five nearest neighbors retrieved from the associated training sets, based on ResNet50-LSEP. (c), (f), and (i) Retrieved
based on ResNet50-GRN-SNDL-BCE.
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TABLE V

SENSITIVITY ANALYSIS OF PARAMETER σ IN THE PROPOSED MODEL

(GRN-SNDL) BASED ON THE F1
s (%) OF THE

K NN CLASSIFICATION

0.05 to 0.2. In this case, we can observe that the classification
performances are better when σ equals 0.05 or 0.1. Therefore,
we conclude that highly satisfactory results can be reached by
the proposed approach function when σ is in the range from
0.05 to 0.1.

IV. CONCLUSION AND FUTURE LINES

In this article, we introduce a GRN based on a newly devel-
oped loss function (GRN-SNDL) which has been specially
designed to classify and retrieve RS scene images considering
multiple semantic annotations. The proposed approach pursues
to pull the most semantically similar RS images closer in the
metric space when they share more classes in common, from a
multilabel perspective. To achieve this goal, we stochastically
maximize a weighted leave-one-out K NN score of the training
set, where the corresponding weight matrix is obtained from
the multilabel semantic information that describes the contri-
butions of the nearest neighbors associated with each image on
its class decision. To further preserve the class-discrimination
capability, we also propose a joint loss function by combining
SNDL and BCE. To validate the effectiveness of the proposed
scheme, we conduct extensive experiments on two different RS
processing tasks, i.e. image classification and image retrieval,
using three multilabel benchmark data sets: UCM, AID, and
DFC15. Compared with the state-of-the-art losses for mul-
tilabel RS scene categorization (including BCE and LSEP),
the proposed losses exhibit better classification accuracy, with
an improvement of around 2% and 1% with regard to the
BCE and LSEP losses, respectively. Moreover, the learned
feature embeddings based on our approach manifest a very
promising performance on the RS image retrieval task. With
the ResNet18 model, the MAP scores on the three benchmark
data sets can be improved in around 2% with respect to the use
of BCE. In summary, the proposed model is able to provide
not only superior performance for RS image classification, but
also to preserve the neighborhood structures among the RS
images in the learned metric space, which is guided by the
multilabel information.

Due to the remarkable potential of the presented method
for multilabel RS image classification and retrieval, our future
work will be directed toward adapting our framework to other
relevant RS tasks, such as dimensionality reduction or fine-
grained land-use categorization. Moreover, we plan to inves-
tigate the graph CNN (GCN) [73] for deep metric learning
of RS images with the guidance of the semantic information
among the word embeddings of the multilabel annotations.

We are also interested in exploring further developments in
terms of efficiency.
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