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Abstract— Convolutional neural networks (CNNs) have been
attracting increasing attention in hyperspectral (HS) image clas-
sification due to their ability to capture spatial–spectral feature
representations. Nevertheless, their ability in modeling relations
between the samples remains limited. Beyond the limitations
of grid sampling, graph convolutional networks (GCNs) have
been recently proposed and successfully applied in irregular
(or nongrid) data representation and analysis. In this article,
we thoroughly investigate CNNs and GCNs (qualitatively and
quantitatively) in terms of HS image classification. Due to the
construction of the adjacency matrix on all the data, traditional
GCNs usually suffer from a huge computational cost, particu-
larly in large-scale remote sensing (RS) problems. To this end,
we develop a new minibatch GCN (called miniGCN hereinafter),
which allows to train large-scale GCNs in a minibatch fashion.
More significantly, our miniGCN is capable of inferring out-of-
sample data without retraining networks and improving clas-
sification performance. Furthermore, as CNNs and GCNs can
extract different types of HS features, an intuitive solution to
break the performance bottleneck of a single model is to fuse
them. Since miniGCNs can perform batchwise network training
(enabling the combination of CNNs and GCNs), we explore
three fusion strategies: additive fusion, elementwise multiplicative
fusion, and concatenation fusion to measure the obtained perfor-
mance gain. Extensive experiments, conducted on three HS data
sets, demonstrate the advantages of miniGCNs over GCNs and
the superiority of the tested fusion strategies with regard to the
single CNN or GCN models. The codes of this work will be
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I. INTRODUCTION

LAND use and land cover (LULC) classification [1] using
earth observation (EO) data, e.g., hyperspectral (HS) [2],

synthetic aperture radar (SAR) [3], light detection and ranging
(LiDAR) [4], and so on is a challenging topic in geoscience
and remote sensing (RS). Characterized by their rich and
detailed spectral information, HS images allow discriminating
the objects of interest more effectively (particularly those in
spectrally similar classes) by capturing more subtle discrep-
ancies from the contiguous shape of the spectral signatures
associated with their pixels. HS imagery enables the detection
and recognition of the materials on the earth’s surface at
a more fine and accurate level compared with RGB and
multispectral (MS) data. However, the high spectral mixing
between materials [5] and spectral variability and complex
noise effects [6] bring difficulties in extracting discriminative
information from such data.

Over the past decades, a variety of handcrafted and learning-
based feature extraction (FE) algorithms [7]–[15] (either
unsupervised or supervised) have been successfully designed
for HS image classification. Among them, morphological
profiles (MPs) [16] are an effective tool that allows us to
manually extract spatial–spectral features from HS images.
Fauvel et al. [17] used MPs as input vectors for a support
vector machine (SVM) classifier, achieving satisfactory clas-
sification results. Samat et al. [18] designed new maximally
stable extremal region-guided MPs, yielding a high classifica-
tion performance on MS images. Other works based on mor-
phological operations have been developed to further enhance
feature representations, including attribute profiles (APs) [19]
and invariant APs [20], [21]. Another typical FE strategy is
subspace-based learning, e.g., sparse representation [22], [23]
and manifold learning [11], [24]. These methods learn trans-
formations or projections by managing the high-dimensional
original space using a new, latent, low-dimensional subspace
representation. Although the aforementioned approaches have
been proven to be effective in HS classification tasks, feature
discrimination still remains limited due to the lack of powerful
data fitting and representation ability.
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Fig. 1. Comparison of CNN and GCN architectures in HS image classifi-
cation tasks. The variables of V, Z, H, S, and Y in GCNs denote vertexes,
hidden representations via GCN layer, hidden representations via ReLU layer,
hidden representations via softmax layer, and labels, respectively.

Inspired by the success of deep learning (DL) techniques,
significant progress has been made in the area of HS image
classification by using various advanced deep networks [25].
Chen et al. [26] applied stacked autoencoder networks to
dimensionally reduced HS images—obtained by principal
component analysis (PCA)—for HS image classification.
Furthermore, Chen et al. [27] adopted convolutional
neural networks (CNNs) to extract spatial–spectral features
more effectively from HS images, thereby yielding higher
classification performance. Recurrent neural networks (RNNs)
[28], [29] can process the spectral signatures as sequential
data. In [30], a cascaded RNN was proposed to make full
use of spectral information for high-accuracy HS image
classification. Recently, Hang et al. [31] developed multitask
generative adversarial networks and provided new insight into
HS image classification, yielding state-of-the-art performance.

Comparatively, graph convolutional networks (GCNs) [32]
are a hot topic and emerging network architecture, which is
able to effectively handle graph structure data by modeling
relations between samples (or vertexes). Therefore, GCNs
can be naturally used to model long-range spatial relations
in the HS image (see Fig. 1), which fails to be considered
in CNNs. Currently, GCNs are less popular than CNNs in
HS image classification. There are a few works related to
the use of GCNs in HSI classification, though. Shahraki
and Prasad [33] proposed to cascade 1-D CNNs and GCNs
for HS image classification. Qin et al. [34] extended the
original GCNs to a second-order version by simultaneously
considering spatial and spectral neighborhoods. Wan et al. [35]
performed superpixel segmentation on the HS image and fed
it into GCN to reduce the computational cost and improve
the classification accuracy. However, there are some potential
limitations of GCNs regarding the following aspects.

1) The high computational cost (resulting from the con-
struction of the adjacency matrix) is a significant bot-
tleneck of GCNs in the HS image classification task,
particularly when using large-scale HS image data.

2) GCNs only allow for full-batch network learning, that is,
feeding all samples at once into the network. This might
lead to large memory costs and slow gradient descent,
as well as the negative effects of variable updating.

3) Last but not least, a trained GCN-based model fails
to predict the new input samples (i.e., out of samples)

without retraining the network, which has a major influ-
ence on the use of GCNs in practice.

To overcome these difficulties, in this work, we introduce
a simple but effective minibatch GCN (called miniGCN).
Similar to CNNs, miniGCNs can effectively train the network
for classification on a downsampled graph (or topological
structure) in minibatch fashion, and meanwhile, the learned
model can be directly used for prediction purposes on new
data. In addition, with our newly proposed miniGCNs, we aim
to make a side-by-side comparison between CNNs and GCNs
(both qualitatively and quantitatively) and raise an interesting
question: which one between CNNs and GCNs can assist more
in the HS image classification task? It is well known that
CNNs and GCNs can extract and represent spectral informa-
tion from HS images using different perspectives, i.e., spatial–
spectral features of CNNs, graph (or relation) representations
of GCNs, and so on. This naturally motivates us to jointly
use them by investigating different fusion strategies, making
them even more suitable for HS image classification. More
specifically, the main contributions of this article are threefold.

1) We systematically analyze CNNs and GCNs with a
focus on HS image classification. To the best of our
knowledge, this is the first time that the potentials and
drawbacks of GCNs (in comparison with CNNs) are
investigated in the community.

2) We propose a novel supervised version of GCNs:
miniGCNs, for short. As the name suggests, miniGCNs
can be trained in minibatch fashion, trying to find a
better and more robust local optimum. Unlike traditional
GCNs, our miniGCNs are not only capable of training
the networks using training set but also allow for a
straightforward inference of large-scale, out-of-samples
using the trained model.

3) We develop three fusion schemes, including additive
fusion, elementwise multiplicative fusion, and concate-
nation fusion, to achieve better classification results in
HS images by integrating features extracted from CNNs
and our miniGCNs, in an end-to-end trainable network.

The remaining of this article is organized as follows.
Section II deeply reviews GCN-related knowledge. Section III
elaborates on the proposed miniGCNs and introduces three
different fusion strategies in the context of a general end-to-
end fusion network. Extensive experiments and analyses are
given in Section IV. Section V concludes this article with some
remarks and hints at plausible future research work.

II. REVIEW OF GCNS

In this section, we provide some preliminaries of GCNs by
reviewing the basic definitions and notations, including graph
construction and several important theorems and proofs for
graph convolution in the spectral domain.

A. Definition of Graph

A graph is a complex nonlinear data structure, which is
used to describe a one-to-many relationship in a non-Euclidean
space. In our case, the relations between spectral signatures
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can be represented as an undirected graph. Let G = (V, E) be
an undirected graph, where V and E denote the vertex and edge
sets, respectively. In our context, the vertex set consists of HS
pixels, whereas the edge set is composed of the similarities
between any two vertexes, i.e., Vi and V j .

B. Construction of the Adjacency Matrix

The adjacency matrix, denoted as A, defines the relation-
ships (or edges) between vertexes. Each element in A can
be generally computed by using the following radial basis
function (RBF):

Ai, j = exp

(
−�xi − x j�2

σ 2

)
(1)

where σ is a parameter to control the width of the RBF. The
vectors xi and x j denote the spectral signatures associated
with the vertexes vi and v j . Once A is given, we create the
corresponding graph Laplacian matrix L as follows:

L = D − A (2)

where D is a diagonal matrix representing the degrees of A,
i.e., Di,i = ∑

j Ai, j [36], [37]. To enhance the generalization
ability of the graph [38], the symmetric normalized Laplacian
matrix (Lsym) can be used as follows:

Lsym = D− 1
2 LD− 1

2

= I − D− 1
2 AD− 1

2 (3)

where I is the identity matrix.

C. Graph Convolutions in the Spectral Domain

Given two functions f and g, their convolution can be then
written as

f (t) � g(t) �
∫ ∞

−∞
f (τ )g(t − τ )dτ (4)

where τ is the shifting distance and � denotes the convolution
operator.

Theorem 1: The Fourier transform of the convolution of
two functions f and g is the product of their corresponding
Fourier transforms. This can be formulated as

F [ f (t) � g(t)] = F [ f (t)] · F [g(t)] (5)

where F and · denote the Fourier transform and pointwise
multiplication, respectively.

Theorem 2: The inverse Fourier transform (F−1) of the
convolution of two functions f and g is equal to 2π the
product of their corresponding inverse Fourier transforms

F−1[ f (t) � g(t)] = 2πF−1[ f (t)] · F−1[g(t)]. (6)

By means of the abovementioned two well-known theorems
[39], i.e., (5) and (6), the convolution can be generalized to
the graph signal as

f (t) � g(t) = F−1{F [ f (t)] · F [g(t)]}]. (7)

Hence, the convolution operation on a graph can be converted
to define the Fourier transform (F ) or to find a set of basis
functions.

Lemma 1: The basis functions of F can be equivalently
represented by a set of eigenvectors of L.

Proof: By referring to [39], we have the following proof.
For many functions that do not converge in domain, e.g.,
y(t) = t2, we can always find a real-valued exponential
function e−σ t to make y(t)e−σ t converge, thereby satisfying
the Dirichlet condition of F , that is∫ ∞

−∞
|y(t)e−σ t |dt < ∞. (8)

Plugging y(t)e−σ t into F , we have∫ ∞

−∞
y(t)e−σ t e−2π ixξ dt (9)

and we can rewrite (9) as∫ ∞

−∞
y(t)e−stdt (10)

where s = σ +2π i xξ . Note that (10) is the Laplace transform.
In other words, the eigenvectors of L are identical to the basis
functions of F . �

Given Lemma 1, we can perform spectral decomposition
on L. We then have

L = U�U−1 (11)

where U = (u1, u2, . . . , un) is the set of eigenvectors of
L, that is, the basis of F . As U is the orthogonal matrix,
i.e., UU� = E, (11) can also be written as

L = U�U−1 = U�U�. (12)

According to (12), F of f on a graph is GF[ f ] = U� f ,
and the inverse transform becomes f = UGF[ f ]. In analogy
with (7), the convolution between f and g on a graph can be
expressed as

G[ f � g] = U{[U� f ] · [U�g]}. (13)

If we write U�g as gθ , the convolution on a graph can be
finally formulated as

G[ f � gθ ] = UgθU� f (14)

where gθ can be regarded as the function of the eigenvalues
(�) of L with the respect to the variable θ , i.e., gθ (�).

To reduce the computational complexity of (14), Hammond
et al. [40] approximately fitted gθ by applying the K th order
truncated expansion of Chebyshev polynomials. By doing so,
(14) can be rewritten as

G[ f � gθ ] ≈
K∑

k=0

θ �
k Tk(L̃) f (15)

where Tk(•) and θ �
k are the Chebyshev polynomials with

respect to the variable • and the Chebyshev coefficients,
respectively. L̃ = (2/λmax)Lsym − I denotes the normalized L.

By limiting K = 1 and assigning the largest eigenvalue
λmax of L̃ to 2 [32], (15) can be further simplified to

G[ f � gθ ] ≈ θ
(
I + D− 1

2 AD− 1
2
)

f. (16)
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Fig. 2. Illustration of short-, middle-, and long-range spatial relations in an HS image. CNNs tend to extract locally spatial information, whereas GCNs are
capable of capturing middle- or long-range spatial relationships (either similarities or dissimilarities) between samples.

Using (16), we have the following propagation rule for
GCNs:

H(	+1) = h
(
D̃− 1

2 ÃD̃− 1
2 H(	)W(	) + b(	)

)
(17)

where Ã = A + I and D̃i,i = ∑
j Ãi, j are defined as the

renormalization terms of A and D, respectively, to enhance
stability in the process of network training. Moreover, H(	)

denotes the output in the 	th layer and h(•) is the activation
function (e.g., ReLU, used in our case) with respect to the
weights to-be-learned {W(	)}p

	=1 and the biases {b(	)}p
	=1 of

all layers (	 = 1, 2, . . . , p).

III. METHODOLOGY

In this section, we systematically analyze CNNs and
GCNs from four different perspectives and further develop
an improvement of existing GCNs called miniGCNs, making
them better applicable to the HS image classification task.
Finally, we introduce three different fusion strategies, yielding
a general end-to-end fusion network.

A. CNNs Versus GCNs: Qualitative Comparison

1) Data Preparation: It is well known that the input of
CNNs is patchwise in HS image classification, and the output
is the set of one-shot encoded labels. Unlike CNNs, GCNs
feed pixelwise samples into the network with an adjacency
matrix that models the relations between samples and needs
to be computed before the training process starts.

2) Feature Representation: CNNs can extract rich spatial
and spectral information from HS images in a short-range
region, whereas GCNs are capable of modeling middle- and
long-range spatial relations between samples by means of their
graph structure. Fig. 2 shows such short-, middle-, and long-
range relations in an HS scene.

3) Network Training: CNNs, as the main member of the
DL family, are normally trained through the use of minibatch
strategies. Conversely, GCNs only allow for full-batch network
training since all samples need to be simultaneously fed into
the network.

Fig. 3. Example illustrating how miniGCNs sample the subgraphs
(or batches) from a full graph G, aiming at training networks in a minibatch
fashion. Solid circles: different colors denote spectral signatures of different
classes in high-dimensional feature space. Dashed boxes: random sampling
regions for each batch.

4) Computational Cost: The computational cost of CNNs
and GCNs in one layer is mainly dominated by matrix
products, yielding an overall O(N DP) and O(N DP + N2 D),
respectively. N , D, and P denote the sample number, and
the dimensions of the input and output features, respectively.
Evidently, GCNs are computationally complex for large graphs
compared with CNNs due to the large-sized matrix multipli-
cation. To this end, a feasible solution might be the minibatch
strategy performed in GCNs. If possible, the complexity of
GCNs can be greatly reduced to O(N DP + N M D), where
M � N denotes the size of minibatches, thus having approx-
imately the same order as CNNs with respect to N .

B. Proposed MiniGCNs

According to Sections III-A3 and III-A4, the computational
cost of GCNs becomes high with an increase in the size
of the graphs. To circumvent the computational burden on
large graphs, a feasible solution (in analogy to CNNs) is to
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Fig. 4. Overview of our end-to-end fusion network (FuNet), illustrating one batch training iteration. It comprises FE and fusion modules, where the former
can extract different kinds of features (using both CNNs and miniGCNs) and the latter combines the resulting features using different fusion strategies before
the final classification.

use minibatch processing. Inspired by inductive learning [41],
we propose miniGCNs, making GCNs trainable in a mini-
batch fashion. Note that our inductive setting neither exploits
features nor graph information of testing nodes in the training
process.

Before presenting the new update rule of graph convolution
in the proposed miniGCNs, we first cast a proposition—proved
in [42]—to theoretically guarantee the applicability of the
minibatch training strategy used in our miniGCNs. Given a
full graph G with |V | = N on the labeled set, we construct a
random node sampler with a budget M (M � N). Before
training each epoch, we repeatedly apply the sampler to
G until each node is sampled, yielding a set of subgraphs
G = {Gs = (Vs, Es)|s = 1, . . . , �(N/M)	}, where �•	 denotes
the ceiling operation.

Proposition 1: Given a node v sampled from a certain
subgraph Vs , i.e., v ∈ Vs , an unbiased estimator of the node v
in the full-batch (	 + 1)th GCN layer, denoted as z(	+1)

v , can
be computed by aggregating features between v and all nodes
u ∈ Vs in the 	th layer

z(	+1)
v =

∑
u∈Vs

(
D̃− 1

2 ÃD̃− 1
2
)

uv

euv
z(	)

u W(	) + b(	)
u (18)

i.e., E(z(	+1)
v ) = ∑

u∈V(D̃−(1/2)ÃD̃−(1/2))uvz(	)
u W(	) + b(	),

if the constant of normalization euv is set to Cuv/Cv ,
where Cuv and Cv are defined as the number of times that
node or edge occurs in all sampled subgraphs.

With Proposition 1 in mind, our miniGCNs can perform
graph convolution in batches, just like CNNs. Using (17),
the update rule in one batch can be directly given by

H̃(	+1)
s = h

(
D̃

− 1
2

s ÃsD̃
− 1

2
s H̃(	)

s W(	) + b(	)
s

)
(19)

where s is not only the sth subgraph but also the sth batch
in the network training. Note that we consider a special case
of Proposition 1: random node sampling without replacement,
by simply setting Cuv = Cv = 1, i.e., euv = 1.

By collecting the outputs of all batches, the final output in
the (	 + 1)th layer can be reformulated as

H(	+1) =
[
H̃(	+1)

1 , . . . , H̃(	+1)
s , . . . , H̃(	+1)⌈

N
M

⌉ ]
. (20)

Fig. 3 shows the process of batch generation in the proposed
miniGCNs. This batch process is similar to the one adopted
in CNNs, and the main difference lies in the fact that the
graph or adjacency matrix in the obtained batch needs to
be reassembled according to the connectivity of G after each
sampling.

C. MiniGCNs Meet CNNs: End-to-End Fusion Networks

Different network architectures are capable of extracting
distinctive representations of HS images, e.g., spatial–spectral
features in CNNs or topological relations between samples in
GCNs. Generally speaking, a single model may not provide
optimal results in terms of performance due to the lack of
feature diversity.

In this section, we naturally propose to fuse different
models or features to enhance feature discrimination ability
by jointly training CNNs and GCNs. Unlike traditional GCNs,
the proposed miniGCNs can perform minibatch learning and
can be combined with standard CNN models. This yields an
end-to-end fusion network, called FuNet hereinafter. Three
fusion strategies, additive (A), elementwise multiplicative (M),
and concatenation (C), are considered. The three fusion models
(A, M, and C) can be, respectively, formulated as follows:

H(	+1)
FuNet−A = H(	)

CNNs ⊕ H(	)
miniGCNs (21)

H(	+1)
FuNet−M = H(	)

CNNs � H(	)
miniGCNs (22)

H(	+1)
FuNet−C = [

H(	)
CNNs, H(	)

miniGCNs

]
(23)

where the operators ⊕, �, and [·, ·], respectively, denote the
elementwise addition, elementwise multiplication, and con-
catenation. Accordingly, H(	)

CNNs and H(	)
miniGCNs are represented

as the 	th layer features extracted from CNNs and miniGCNs,
respectively.

Fig. 4 shows one batch training iteration of CNNs and
miniGCNs in our newly proposed end-to-end fusion networks.
As it can be seen, it comprises FE and fusion modules, where
the former can extract different kinds of features (using both
CNNs and miniGCNs) and the latter combines the resulting
features using different fusion strategies before the final clas-
sification.
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TABLE I

LAND-COVER CLASSES OF THE INDIAN PINES DATA SET,
WITH THE NUMBER OF TRAINING AND TEST SAMPLES

SHOWN FOR EACH CLASS

TABLE II

LAND-COVER CLASSES OF THE PAVIA UNIVERSITY DATA SET,
WITH THE NUMBER OF TRAINING AND TEST SAMPLES

SHOWN FOR EACH CLASS

IV. EXPERIMENTS

A. Data Description

Three widely used HS data sets are adopted to assess the
classification performance of our proposed algorithms, both
quantitatively and qualitatively.

1) Indian Pines Data Set: The first HS data set was
acquired by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor over northwestern Indiana, USA. The
scene comprises of 145 × 145 pixels with a ground sampling
distance (GSD) of 20 m and 220 spectral bands in the
wavelength range from 400 to 2500 nm, at 10-nm spectral
resolution. We retain 200 channels by removing 20 noisy
and water absorption bands, i.e., 104–108, 150–163, and 220.
Table I lists 16 main land-cover categories involved in this
studied scene, as well as the number of training and testing
samples used for the classification task. Correspondingly,
Fig. 5 shows a false-color image of this scene and the spatial
distribution of training and test samples.

2) Pavia University Data Set: The second HS scene is
the well-known Pavia University, which was acquired by
the Reflective Optics System Imaging Spectrometer (ROSIS)
sensor. The ROSIS sensor acquired 103 bands covering the

Fig. 5. False-color images and the distribution of training and test sets
on the three considered data sets, i.e., Indian Pines, Pavia University, and
Houston2013.

spectral range from 430 to 860 nm, and the scene consists
of 610 × 340 pixels at GSD of 1.3 m. Moreover, there are
nine land cover classes in the scene. The class name and the
number of training and test sets are detailed in Table II, while
the distribution of these samples is shown in Fig. 5.

3) Houston2013 Data Set: This data set was used for the
2013 IEEE GRSS data fusion contest,1 and was collected using
the ITRES CASI-1500 sensor over the campus of University
of Houston and its surrounding rural areas in TX, USA. The
image size is 349×1905 pixels with 144 spectral bands ranging
from 364 to 1046 nm, at 10-nm spectral resolution. It should
be noted that the used data set is a cloud-free HS product,
processed by removing some small structures according to the
illumination-related threshold maps computed based on the
spectral signatures.2 Table III lists 15 challenging land-cover
categories and the training and test sets. In Fig. 5, we show
a false-color image of the HS scene and the corresponding
distribution of the training and test samples.

B. Experimental Setup

1) Implementation Details: All networks considered in this
article are implemented using the Tensorflow platform, and
Adam [43] is used to optimize the networks. By following
the “exponential” learning rate policy, the current learning
rate can be dynamically updated by multiplying a base learn-
ing rate (e.g., 0.001) by (1 − (iter/maxIter))0.5 at intervals
of 50 epochs. In the process of network training, the maximum
number of epochs is set to 200. Batch normalization (BN)
[44] is adopted with the 0.9 momentum, and the batch size
in the training phase is set to 32. Moreover, the 	2-norm
regularization, set to 0.001, is employed on weights to stabilize
the network training and reduce overfitting.

Note that the size for each layer and the hyperpara-
meters in networks, such as learning rate and regular-
ization, can be determined by tenfold cross validation,

1http://www.grss-ieee.org/community/technical-committees/data-
fusion/2013-ieee-grss-data-fusion-contest/

2The data were provided by Prof. N. Yokoya from The University of Tokyo.
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TABLE III

LAND-COVER CLASSES OF THE HOUSTON2013 DATA SET,
WITH THE NUMBER OF TRAINING AND TEST SAMPLES

SHOWN FOR EACH CLASS

e.g., using a grid search on the validation set. Ten repli-
cations are performed to randomly separate the original
training set into the new training set and validation set,
with a percentage of 80%–20%. More specifically, we per-
form cross validation to select the size of each layer and
hyperparameters in the range of {16, 32, 64, 128, 256} and
{0.0001, 0.001, 0.01, 0.1, 1}, respectively. More details regard-
ing the parameter settings can refer to our toolbox (or codes)
that will be released after publication.

Furthermore, three commonly used indices, i.e., overall
accuracy (OA), average accuracy (AA), and kappa coefficient
(κ), are used to evaluate the classification performance quan-
titatively.

2) Comparison With State-of-the-Art Baseline Methods:
Several state-of-the-art baseline methods have been selected
for comparison, including K-nearest neighbor (KNN) classi-
fier, random forest (RF), 1-D CNN, 2-D CNN, GCN, and our
proposed miniGCN, as well as three different fusion networks
with different strategies: FuNet-A, FuNet-M, and FuNet-C.
The parameter settings are described in the following.

1) For the KNN, we set the number of nearest neighbors
(K ) to 10, to be consistent with that of K in GCN-related
methods, e.g., GCN, miniGCN, and FuNet.

2) For the RF, 200 decision trees are used in the classifier.
3) For the SVM, the well-known libsvm toolbox3 is used

for implementation in our case. The considered SVM
uses the RBF kernel, whose two optimal hyperparame-
ters σ and λ (the regularization parameter to balance the
training and testing errors) can be determined by fivefold
cross validation in the range σ = [2−3, 2−2, . . . , 24] and
λ = [10−2, 10−1, . . . , 104].

4) For the 1-D CNN, we use one convolutional block,
including a 1-D convolutional layer with a filter size
of 128, a BN layer, a ReLU activation layer, and a
softmax layer with the size of P , where P denotes the
dimension of network output.

3https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

TABLE IV

GENERAL NETWORK CONFIGURATION IN EACH LAYER OF OUR FUNET.
FC, CONV, AND MAXPOOL STAND FOR FC, CONVOLUTION, AND MAX

POOLING, RESPECTIVELY, WHEREAS D AND P DENOTE THE INPUT

AND OUTPUT DIMENSION IN THE NETWORKS, RESPECTIVELY.
FURTHERMORE, THE LAST COMPONENT IN EACH BLOCK

REPRESENTS THE OUTPUT SIZE

5) For the 2-D CNN (similar to 1-D CNN), the architecture
is composed of three 2-D convolutional blocks and
a softmax layer. Each convolutional block involves a
2-D conventional layer, a BN layer, a max-pooling layer,
and a ReLU activation layer. Moreover, the receptive
fields along the spatial and spectral domains for each
convolutional layer are 3 × 3 × 32, 3 × 3 × 64, and
1 × 1 × 128, respectively.

6) For the 3-D CNN, we adopt the same network architec-
ture as the one in [27]. The only difference lies in that
we remove the dropout layer in each block to make a
fair comparison with other networks, e.g., 2-D CNN.

7) For the GCN, similar to [32], a graph convolutional
hidden layer with 128 units is implemented in the
GCN before feeding the features into the softmax layer,
where the adjacency matrix Ã can be computed using
KNN-based graph (K = 10 in our case). The graph con-
volution, GCN, and 1-D CNN share the same network
configuration for a fair comparison.

8) Our miniGCN has the same architecture as the GCN.
The main difference between GCN and miniGCN lies
in the fact that miniGCN is capable of training the
networks in batchwise fashion and tends to reach a better
local optimum of networks.

9) To better exploit diverse information of HS images, e.g.,
features extracted from CNNs or GCNs, our FuNets with
A, M, and C different fusion strategies are developed
by additionally adding a fully connected (FC) fusion
layer behind CNNs and miniGCNs. Table IV details the
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TABLE V

QUANTITATIVE COMPARISON OF DIFFERENT ALGORITHMS IN TERMS OF OA, AA, AND κ ON THE INDIAN
PINES DATA SET. THE BEST ONE IS SHOWN IN BOLD

TABLE VI

QUANTITATIVE PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS IN TERMS OF OA, AA, AND κ ON THE PAVIA

UNIVERSITY DATA SET. THE BEST ONE IS SHOWN IN BOLD

configuration of our FuNet for the layerwise network
architecture.

It should be noted, however, that the patch centered by
a pixel is usually used as the input of CNNs in HS image
classification. In this connection, the original HS image is
extended by the “replicate” operation, i.e., copying the pixels
within the image to that out of the original image boundary,
to solve the problem of the boundaries in the CNN-related
experiments.

C. Parameter Analysis on Ã Generation

Since the performance of GCNs depends (to some extent)
on the quality of adjacency matrix, i.e., Ã, it is important
to investigate the performance gains that can be obtained by
adjusting the two parameters: number of neighbors (K ) and
width of RBF function (σ ) of Ã [see (1)]. For this purpose,
we show the changing trend (in terms of OA) for different
combinations of the two parameters in the Indian Pines data.
More specifically, GCNs and miniGCNs are selected to ana-
lyze the parameter sensitivity. As it can be seen from Fig. 6,

the parameter K (to a large extent) dominates the performance
gain. Nevertheless, the OAs of GCNs and miniGCNs remain
stable with an increase of K value. On the other hand, varying
the parameter σ only yields a slight performance fluctuation,
indicating that this parameter might not be correctly fine-
tuned. Most importantly, we observed that the performance
gain or derogation in miniGCNs is relatively slow and gentle
with the gradual change of the two parameters. In turn,
with different parameter combinations, the GCNs lead to
comparatively more perturbed results. Moreover, the whole
classification performance of GCNs also seems to reach a
bottleneck, because its full-batch training strategy usually fails
to find a better local optimum. Comprehensively, the parameter
combination of (K , σ ) in our case is set to (10, 1) since this
parameter range is relatively stable and, hence, it is applied to
the rest of the considered data sets for simplicity.

D. Quantitative Evaluation

Tables V–VII quantitatively report the classification scores
obtained by different methods in terms of OA, AA, and κ ,
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Fig. 6. Parameter sensitivity analysis (on the Indian Pines data) of the
adjacency matrix Ã [see (1)] in terms of K and σ for (a) GCNs and
(b) miniGCNs.

Fig. 7. Ground truth and classification maps obtained by different methods
on the Indian Pines data set.

as well as the individual class accuracies for the Indian Pines,
Pavia University, and Houston2013 data sets, respectively.

Overall, KNN, RF, and SVM obtain similar classification
results on the Pavia University and Houston2013 data sets,
while the classification performance of the KNN classifier is
inferior to that achieved using the RF on the Indian Pines
data set. This might be explained by a few noisy training
samples. Please note that there is a similar trend between
RF and SVM in classification performance. By means of the
powerful learning ability of DL techniques, 1-D CNN, 2-D
CNN, 3-D CNN, and GCN perform better than traditional
classifiers (KNN, RF, and SVM). Unlike 1-D CNN and GCN
that only consider pixelwise network input, 2-D CNN and
3-D CNN can extract the spatial–spectral information from
HS images more effectively, yielding higher classification
accuracies. Not surprisingly, the performance of 3-D CNN is
generally superior to that of 2-D CNN, due to the additional
local convolution on the spectral domain. We have to point
out, however, that the 3-D CNN requires additional network
parameters to be estimated and tends to suffer from overfitting
problems (particularly with limited training samples). The
resulting accuracies on the Indian Pines data set demonstrate
these potential problems. Moreover, GCN brings moderate
increments of at least 1% OA, AA, and κ over the 1-D CNN
since the spatial relation between samples can be well-modeled
in the form of a graph structure by GCNs.

Remarkably, our miniGCN achieves stable performance
improvements when compared to either GCN or 1-D CNN,
even making it comparable to 2-D CNN to some extent, e.g.,
on the Indian Pines and Houston2013 data sets. As expected,
the FuNet (that combines the benefits of CNNs and GCNs)

Fig. 8. Ground truth and classification maps obtained by different methods
on the Pavia University data set.

outperforms those single models, demonstrating its ability
to fuse different spectral representations. More specifically,
a comparison between the three commonly used fusion strate-
gies reveals that FuNet-C tends to obtain better classification
performance compared with FuNet-A and FuNet-M, particu-
larly on the Indian Pines and Pavia University, where there is
a dramatic performance improvement (see Tables V and VI).

Furthermore, for those classes that have very few sam-
ples, e.g., Alfalfa, Grass Pasture Mowed, Oats on Indian
Pines, or unbalanced samples, e.g., Road, Parking Lot2 on
Houston2013, the 2-D CNN and 3-D CNN can obtain higher
classification accuracies by considering the contextual infor-
mation in both the spatial and spectral domains. On the
contrary, the GCN-based models fail to accurately model those
classes. However, it is worth noting that the fused networks
are capable of better identifying these challenging classes, due
to the joint use of spatial–spectral (2-D CNN) and relation-
augmented (miniGCN) features.

E. Visual Comparison

We also make a visual comparison between different classi-
fication methods in the form of classification maps, as shown
in Figs. 7–9. In general, pixelwise classification models (e.g.,
KNN, RF, SVM, and 1-D CNN) result in salt and pepper
noise in the classification maps. Although the GCN considers
the spatial relation modeling between samples, the use of
large graphs constructed based on all samples (and full-
batch network training) limits its performance to a great
extent, thereby yielding relatively poor classification maps.
Our proposed miniGCN extracts the HS features by locally
preserving the graph (or manifold) structure in one batch,
leading to results that are comparable to those obtained by
the 2-D CNN and 3-D CNN. This means that we can achieve
relatively robust representations compared to full graph preser-
vation since the batchwise strategy can eliminate some errors
resulting from the manually computed adjacency matrix and
further reduce the error accumulation and propagation between
layers. As expected, the FuNet-based methods obtain smoother
and more detailed maps in comparison with other competitors,
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TABLE VII

QUANTITATIVE PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS IN TERMS OF OA, AA, AND κ ON THE
HOUSTON2013 DATA SET. THE BEST ONE IS SHOWN IN BOLD

Fig. 9. Ground truth and classification maps obtained by different methods on the Houston2013 data set.

mainly due to the effective combination of different features
that further enhance the HS representation ability. It should be
noted, however, that the batchwise input in CNNs could lead
to losing some edge details to some extent (e.g., 2-D CNN and
3-D CNN). This explains why the classification maps obtained
by FuNets are not as sharp (in terms of edge delineation) as
those obtained by only using miniGCNs.

V. CONCLUSION

Due to the embedding of graph (or topological) structure,
GCNs can properly characterize the underlying data structure
of HS images in high-dimensional space but inevitably intro-
duce some drawbacks, e.g., high storage and computational
cost when computing the adjacency matrix, gradient explod-
ing or vanishing problems (due to full-batch network training)

and the need to retrain these networks when new data are fed.
In order to address these problems, in this article, we develop
a new supervised version of GCNs, called miniGCNs, which
allows us to train large-scale graph networks in a minibatch
fashion. Due to their batchwise network training strategy, our
newly proposed miniGCNs are more flexible, in the sense
that they not only yield lower computational cost and stable
local optima in the training phase but also can directly predict
the new input samples, i.e., the out-of-sample cases, with no
need to retrain the network. More significantly, our trainable
minibatch strategy makes it possible to jointly use CNNs and
GCNs for extracting more diverse and discriminative feature
representations for the HS image classification task. To exploit
this property, we have further investigated several fusion
modules: A, M, and C that integrate CNNs and miniGCNs
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in an end-to-end trainable fashion. Our experimental results,
conducted on three widely used HS data sets, demonstrate the
effectiveness and superiority of our newly proposed miniGCNs
compared to the traditional GCNs. Also, the FuNet (with
different fusion strategies) has been shown to be superior to
using single model (e.g., CNNs and miniGCNs).

In the future, we will investigate the possible combination of
different deep networks and our miniGCNs and also develop
more advanced fusion modules, e.g., weighted fusion, to fully
exploit the rich spectral information contained in HS images.

ACKNOWLEDGMENT

The authors would like to the Hyperspectral Image Analysis
Group, University of Houston, for providing the CASI Uni-
versity of Houston data sets and the IEEE GRSS DFC2013.

REFERENCES

[1] J. Anderson, A Land Use Land Cover Classification Systems for Use
With Remote Sensor Data, vol. 964. Washington, DC, USA: US Gov-
ernment Printing Office, 1976.

[2] B. Rasti et al., “Feature extraction for hyperspectral imagery: The
evolution from shallow to deep,” IEEE Geosci. Remote Sens. Mag., early
access, Apr. 29, 2020, doi: 10.1109/MGRS.2020.2979764.

[3] J. Kang, D. Hong, J. Liu, G. Baier, N. Yokoya, and B. Demir, “Learning
convolutional sparse coding on complex domain for interferometric
phase restoration,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Apr. 9, 2020, doi: 10.1109/TNNLS.2020.2979546.

[4] R. Huang, D. Hong, Y. Xu, W. Yao, and U. Stilla, “Multi-scale local
context embedding for LiDAR point cloud classification,” IEEE Geosci.
Remote Sens. Lett., vol. 17, no. 4, pp. 721–725, Apr. 2020.

[5] J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geomet-
rical, statistical, and sparse regression-based approaches,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379,
Apr. 2012.

[6] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented linear
mixing model to address spectral variability for hyperspectral unmixing,”
IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923–1938, Apr. 2019.

[7] P. Ghamisi et al., “Advances in hyperspectral image and signal process-
ing: A comprehensive overview of the state of the art,” IEEE Geosci.
Remote Sens. Mag., vol. 5, no. 4, pp. 37–78, Dec. 2017.

[8] J. Peng and Q. Du, “Robust joint sparse representation based on
maximum correntropy criterion for hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 12, pp. 7152–7164,
Dec. 2017.

[9] J. Peng, W. Sun, and Q. Du, “Self-paced joint sparse representation for
the classification of hyperspectral images,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 2, pp. 1183–1194, Feb. 2019.

[10] S. Liu, Q. Du, X. Tong, A. Samat, and L. Bruzzone, “Unsupervised
change detection in multispectral remote sensing images via spectral-
spatial band expansion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 12, no. 9, pp. 3578–3587, Sep. 2019.

[11] D. Hong, N. Yokoya, J. Chanussot, J. Xu, and X. X. Zhu, “Learning to
propagate labels on graphs: An iterative multitask regression framework
for semi-supervised hyperspectral dimensionality reduction,” ISPRS
J. Photogramm. Remote Sens., vol. 158, pp. 35–49, Dec. 2019.

[12] S. Liu, D. Marinelli, L. Bruzzone, and F. Bovolo, “A review of change
detection in multitemporal hyperspectral images: Current techniques,
applications, and challenges,” IEEE Geosci. Remote Sens. Mag., vol. 7,
no. 2, pp. 140–158, Jun. 2019.

[13] L. Wang, J. Peng, and W. Sun, “Spatial–spectral squeeze-and-excitation
residual network for hyperspectral image classification,” Remote Sens.,
vol. 11, no. 7, p. 884, Apr. 2019.

[14] A. Samat, E. Li, W. Wang, S. Liu, C. Lin, and J. Abuduwaili, “Meta-
XGBoost for hyperspectral image classification using extended MSER-
guided morphological profiles,” Remote Sens., vol. 12, no. 12, p. 1973,
Jun. 2020.

[15] D. Hong, N. Yokoya, G.-S. Xia, J. Chanussot, and X. X. Zhu,
“X-ModalNet: A semi-supervised deep cross-modal network for clas-
sification of remote sensing data,” ISPRS J. Photogramm. Remote Sens.,
vol. 167, pp. 12–23, Sep. 2020.

[16] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005.

[17] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson,
“Spectral and spatial classification of hyperspectral data using SVMs
and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 11, pp. 3804–3814, Nov. 2008.

[18] A. Samat, C. Persello, S. Liu, E. Li, Z. Miao, and J. Abuduwaili,
“Classification of VHR multispectral images using ExtraTrees and maxi-
mally stable extremal region-guided morphological profile,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 9, pp. 3179–3195,
Sep. 2018.

[19] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone,
“Morphological attribute profiles for the analysis of very high reso-
lution images,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10,
pp. 3747–3762, Oct. 2010.

[20] D. Hong, X. Wu, P. Ghamisi, J. Chanussot, N. Yokoya, and X. X. Zhu,
“Invariant attribute profiles: A spatial-frequency joint feature extractor
for hyperspectral image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 58, no. 6, pp. 3791–3808, Jun. 2020.

[21] X. Wu, D. Hong, J. Chanussot, Y. Xu, R. Tao, and Y. Wang, “Fourier-
based rotation-invariant feature boosting: An efficient framework for
geospatial object detection,” IEEE Geosci. Remote Sens. Lett., vol. 17,
no. 2, pp. 302–306, Feb. 2020.

[22] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image
classification using dictionary-based sparse representation,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973–3985,
Oct. 2011.

[23] L. Gao, D. Hong, J. Yao, B. Zhang, P. Gamba, and J. Chanussot,
“Spectral superresolution of multispectral imagery with joint sparse and
low-rank learning,” IEEE Trans. Geosci. Remote Sens., early access,
Jun. 18, 2020, doi: 10.1109/TGRS.2020.3000684.

[24] D. Hong, N. Yokoya, and X. X. Zhu, “Learning a robust local manifold
representation for hyperspectral dimensionality reduction,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6, pp. 2960–2975,
Jun. 2017.

[25] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. Atli Benediktsson,
“Deep learning for hyperspectral image classification: An overview,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709,
Sep. 2019.

[26] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-
based classification of hyperspectral data,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2094–2107,
Jun. 2014.

[27] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, Oct. 2016.

[28] Q. Liu, F. Zhou, R. Hang, and X. Yuan, “Bidirectional-convolutional
LSTM based spectral-spatial feature learning for hyperspectral image
classification,” Remote Sens., vol. 9, no. 12, p. 1330, Dec. 2017.

[29] H. Wu and S. Prasad, “Convolutional recurrent neural networks forhy-
perspectral data classification,” Remote Sens., vol. 9, no. 3, p. 298,
Mar. 2017.

[30] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, “Cascaded recurrent neural
networks for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5384–5394, Aug. 2019.

[31] R. Hang, F. Zhou, Q. Liu, and P. Ghamisi, “Classification of hyper-
spectral images via multitask generative adversarial networks,” IEEE
Trans. Geosci. Remote Sens., early access, Jun. 25, 2020, doi:
10.1109/TGRS.2020.3003341.

[32] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907. [Online]. Available:
http://arxiv.org/abs/1609.02907

[33] F. F. Shahraki and S. Prasad, “Graph convolutional neural networks for
hyperspectral data classification,” in Proc. IEEE Global Conf. Signal Inf.
Process., Nov. 2018, pp. 968–972.

[34] A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Yan Tang,
“Spectral–spatial graph convolutional networks for semisupervised
hyperspectral image classification,” IEEE Geosci. Remote Sens. Lett.,
vol. 16, no. 2, pp. 241–245, Feb. 2019.

[35] S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, and J. Yang, “Hyper-
spectral image classification with context-aware dynamic graph con-
volutional network,” 2019, arXiv:1909.11953. [Online]. Available:
http://arxiv.org/abs/1909.11953

Authorized licensed use limited to: Antonio Plaza. Downloaded on August 23,2020 at 09:41:16 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/MGRS.2020.2979764
http://dx.doi.org/10.1109/TNNLS.2020.2979546
http://dx.doi.org/10.1109/TGRS.2020.3000684
http://dx.doi.org/10.1109/TGRS.2020.3003341


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

[36] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “CoSpace: Common
subspace learning from hyperspectral-multispectral correspondences,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4349–4359,
Jul. 2019.

[37] D. Hong, N. Yokoya, N. Ge, J. Chanussot, and X. X. Zhu, “Learn-
able manifold alignment (LeMA): A semi-supervised cross-modality
learning framework for land cover and land use classification,” ISPRS
J. Photogramm. Remote Sens., vol. 147, pp. 193–205, Jan. 2019.

[38] F. R. Chung and F. C. Graham, Spectral Graph Theory,
vol. 92. Providence, RI, USA: American Mathematical Society,
1997.

[39] C. D. McGillem and G. R. Cooper, Continuous and Discrete Signal and
System Analysis. London, U.K.: Oxford Univ. Press, 1991.

[40] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30,
no. 2, pp. 129–150, Mar. 2011.

[41] R. S. Michalski, “A theory and methodology of inductive learning,”
Mach. Learn., vol. 110, pp. 83–134, Oct. 1983.

[42] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“GraphSAINT: Graph sampling based inductive learning method,”
2019, arXiv:1907.04931. [Online]. Available: http://arxiv.org/abs/
1907.04931

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167. [Online]. Available: http://arxiv.org/abs/1502.03167

Danfeng Hong (Member, IEEE) received the M.Sc.
degree (summa cum laude) in computer vision from
the College of Information Engineering, Qingdao
University, Qingdao, China, in 2015, and the Dr.-Ing
degree (summa cum laude) from Signal Processing
in Earth Observation (SiPEO), Technical University
of Munich (TUM), Munich, Germany, in 2019.

Since 2015, he has been a Research Associate with
the Remote Sensing Technology Institute (IMF),
German Aerospace Center (DLR), Oberpfaffen-
hofen, Germany. He is a Research Scientist and

leads a Spectral Vision Working Group, IMF, DLR, and also an Adjunct
Scientist with GIPSA-lab, Grenoble INP, CNRS, Univ. Grenoble Alpes,
Grenoble, France. His research interests include signal/image processing and
analysis, hyperspectral remote sensing, machine/deep learning, and artificial
intelligence and their applications in earth vision.

Lianru Gao (Senior Member, IEEE) received the
B.S. degree in civil engineering from Tsinghua Uni-
versity, Beijing, China, in 2002, the Ph.D. degree
in cartography and geographic information system
from the Institute of Remote Sensing Applica-
tions, Chinese Academy of Sciences (CAS), Beijing,
in 2007.

He is a Professor with the Key Laboratory of Dig-
ital Earth Science, Aerospace Information Research
Institute, CAS. He has also been a Visiting Scholar
with the University of Extremadura, Cáceres, Spain,

in 2014, and with Mississippi State University (MSU), Starkville, MS, USA,
in 2016. In the last ten years, he was the PI of ten scientific research projects
at national and ministerial levels, including projects by the National Natural
Science Foundation of China from 2010 to 2012, 2016 to 2019, and 2018 to
2020, and by the Key Research Program of the CAS from 2013 to 2015.
He has published more than 160 peer-reviewed papers, and there are more
than 80 journal papers included by SCI. He has coauthored an academic
book, Hyperspectral Image Classification and Target Detection. He obtained
28 National Invention Patents in China. His research focuses on hyperspectral
image processing and information extraction.

Dr. Gao was awarded the Outstanding Science and Technology Achievement
Prize of the CAS in 2016 and was supported by the China National Science
Fund for Excellent Young Scholars in 2017, and won the Second Prize of the
State Scientific and Technological Progress Award in 2018. He received the
recognition of the Best Reviewer of the IEEE JOURNAL OF SELECTED TOP-
ICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING in 2015 and
the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING in 2017.

Jing Yao received the B.Sc. degree from Northwest
University, Xi’an, China, in 2014. He is pursu-
ing the Ph.D. degree with the School of Math-
ematics and Statistics, Xi’an Jiaotong University,
Xi’an.

From 2019 to 2020, he is a Visiting Student with
Signal Processing in Earth Observation (SiPEO),
Technical University of Munich (TUM), Munich,
Germany, and at the Remote Sensing Technology
Institute (IMF), German Aerospace Center (DLR),
Oberpfaffenhofen, Germany. His research interests

include low-rank modeling, hyperspectral image analysis, and deep learning-
based image processing methods.

Bing Zhang (Fellow, IEEE) received the B.S.
degree in geography from Peking University, Bei-
jing, China, in 1991, and the M.S. and Ph.D. degrees
in remote sensing from the Institute of Remote
Sensing Applications, Chinese Academy of Sciences
(CAS), Beijing, in 1994 and 2003, respectively.

He is a Full Professor and the Deputy Director of
the Aerospace Information Research Institute, CAS,
where he has been leading lots of key scientific
projects in the area of hyperspectral remote sensing
for more than 25 years. He has authored more than

300 publications, including more than 170 journal papers. He has edited six
books/contributed book chapters on hyperspectral image processing and sub-
sequent applications. His creative achievements were rewarded ten important
prizes from Chinese Government and special government allowances of the
Chinese State Council. His research interests include the development of
mathematical and physical models and image processing software for the
analysis of hyperspectral remote sensing data in many different areas.

Dr. Zhang was a Student Paper Competition Committee Member in IGARSS
from 2015 to 2019. He was awarded the National Science Foundation for
Distinguished Young Scholars of China in 2013 and the 2016 Outstanding
Science and Technology Achievement Prize of the Chinese Academy of
Sciences, the highest level of Awards for the CAS scholars. His creative
achievements were rewarded ten important prizes from Chinese Government
and special government allowances of the Chinese State Council. He is
serving as an Associate Editor for the IEEE JOURNAL OF SELECTED TOPICS
IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. He has been
serving as a Technical Committee Member for the IEEE Workshop on
Hyperspectral Image and Signal Processing since 2011, as the President of the
Hyperspectral Remote Sensing Committee of the China National Committee
of International Society for Digital Earth since 2012, and as the Standing
Director of the Chinese Society of Space Research (CSSR) since 2016.

Authorized licensed use limited to: Antonio Plaza. Downloaded on August 23,2020 at 09:41:16 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HONG et al.: GRAPH CONVOLUTIONAL NETWORKS FOR HS IMAGE CLASSIFICATION 13

Antonio Plaza (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer engineering from
Hyperspectral Computing Laboratory, Department
of Technology of Computers and Communica-
tions, University of Extremadura, Cáceres, Spain,
in 1999 and 2002, respectively.

He is the Head of the Hyperspectral Com-
puting Laboratory, Department of Technology of
Computers and Communications, University of
Extremadura. He has authored more than 600 pub-
lications, including over 200 JCR journal articles

(over 160 in IEEE journals), 23 book chapters, and around 300 peer-reviewed
conference proceeding papers. His research interests include hyperspectral
data processing and parallel computing of remote sensing data.

Dr. Plaza is a fellow of the IEEE for contributions to hyperspectral data
processing and parallel computing of earth observation data. He was a member
of the Editorial Board of the IEEE GEOSCIENCE AND REMOTE SENSING
NEWSLETTER from 2011 to 2012 and the IEEE Geoscience and Remote
Sensing Magazine in 2013. He was also a member of the Steering Committee
of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVA-
TIONS AND REMOTE SENSING (JSTARS). He received the recognition as a
Best Reviewer of the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

in 2009 and the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING in 2010, for which he has served as an Associate Editor from
2007 to 2012. He was also a recipient of the Most Highly Cited Paper
from 2005 to 2010 in the Journal of Parallel and Distributed Computing,
the 2013 Best Paper Award of the IEEE JOURNAL OF SELECTED TOPICS

IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING (JSTARS), and
the Best Column Award of the IEEE Signal Processing Magazine in 2015. He
received the Best Paper Awards at the IEEE International Conference on Space
Technology and the IEEE Symposium on Signal Processing and Information
Technology. He has served as the Director of Education Activities for the IEEE
Geoscience and Remote Sensing Society (GRSS) from 2011 to 2012 and as
the President of the Spanish Chapter of the IEEE GRSS from 2012 to 2016. He
has reviewed more than 500 manuscripts for over 50 different journals. He has
served as the Editor-in-Chief for the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING from 2013 to 2017. He has guestedited ten special
issues on hyperspectral remote sensing for different journals. He is also
an Associate Editor of the IEEE ACCESS (received the recognition as an
Outstanding Associate Editor of the journal in 2017). Additional information
can be found at http://www.umbc.edu/rssipl/people/aplaza

Jocelyn Chanussot (Fellow, IEEE) received the
M.Sc. degree in electrical engineering from the
Grenoble Institute of Technology (Grenoble INP),
Grenoble, France, in 1995, and the Ph.D. degree
from the Université de Savoie, Annecy, France,
in 1998.

Since 1999, he has been with Grenoble INP, where
he is a Professor of signal and image processing. He
has been a Visiting Scholar at Stanford University,
Stanford, CA, USA, KTH, Stockholm, Sweden, and
NUS, Singapore. Since 2013, he has been an Adjunct

Professor with the University of Iceland, Reykjavik, Iceland. From 2015 to
2017, he was a Visiting Professor at the University of California at Los
Angeles (UCLA), Los Angeles, CA, USA. He holds the AXA Chair in
remote sensing and is an Adjunct Professor at the Chinese Academy of
Sciences, Aerospace Information Research Institute, Beijing, China. His
research interests include image analysis, hyperspectral remote sensing, data
fusion, machine learning, and artificial intelligence.

Dr. Chanussot was the founding President of the IEEE GEOSCIENCE AND

REMOTE SENSING French Chapter from 2007 to 2010, which received the
2010 IEEE GRS-S Chapter Excellence Award. He was the Vice-President of
the IEEE Geoscience and Remote Sensing Society in charge of meetings and
symposia from 2017 to 2019. He has received multiple outstanding paper
awards. He was the General Chair of the first IEEE GRSS Workshop on
Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
(WHISPERS). He was the Chair (2009–2011) and Co-Chair (2005–2008) of
the GRS Data Fusion Technical Committee. He was a member of the Machine
Learning for Signal Processing Technical Committee of the IEEE Signal
Processing Society from 2006 to 2008 and the Program Chair of the IEEE
International Workshop on Machine Learning for Signal Processing in 2009.
He is an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE AND

REMOTE SENSING, the IEEE TRANSACTIONS ON IMAGE PROCESSING, and
the PROCEEDINGS OF THE IEEE. He was the Editor-in-Chief of the IEEE
JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND

REMOTE SENSING from 2011 to 2015. In 2014, he served as a Guest Editor
for the IEEE Signal Processing Magazine. He is a member of the Institut
Universitaire de France from 2012 to 2017 and a Highly Cited Researcher of
the Clarivate Analytics/Thomson Reuters from 2018 to 2019.

Authorized licensed use limited to: Antonio Plaza. Downloaded on August 23,2020 at 09:41:16 UTC from IEEE Xplore.  Restrictions apply. 


