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Abstract— Convolutional neural networks (CNNs) have proven
to be a powerful tool for the classification of hyperspectral
images (HSIs). The CNN kernels are able to naturally include
spatial information to smooth out the spectral variability and
the noise present in HSI data. However, these kernels are
composed of a large number of learning parameters that must
be correctly adjusted to achieve good performance. This forces
the model to consume a large amount of training data, being
prone to overfitting when limited labeled samples are available.
In addition, the execution of kernels is computationally very
expensive, increasing quadratically with respect to the size of the
convolution filter. This significantly reduces the performance of
the model. To overcome the aforementioned limitations, this work
presents a new few-parameter CNN (based on shift operations)
for HSI classification that dramatically reduces both the number
of parameters and the computational complexity of the model
in terms of floating-point operations (FLOPs). The operational
module combines a shift kernel (which adjusts the input data
in particular directions without involving any parameters nor
FLOPs) with pointwise convolutions that perform the feature
extraction stage. The newly developed shift-based CNN has been
employed to conduct HSI classification over five widely used and
challenging data sets, achieving very promising results in terms
of computational performance and classification accuracy.

Index Terms— Classification, convolutional neural networks
(CNNs), hyperspectral images (HSIs), shift operation.
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I. INTRODUCTION

ADVANCES in computing technology (both in terms
of data processing and storage) have led to a gen-

uine revolution in the field of artificial intelligence, allowing
the development and implementation of complex and really
sophisticated automatic data processing methods. Machine
learning approaches have reached a high level of specialization
in data analysis and pattern recognition [1], being success-
fully applied to a wide range of activities, including speech
recognition [2]–[4], text analysis [5], [6], data mining [7], [8]
or image processing [9], [10], and computer vision [11], [12],
among others. In the field of Earth observation (EO) and
remote sensing, multiple algorithms have been applied for the
analysis of remotely sensed data [13]–[15], achieving accurate
results in tasks, such as object detection [16], [17] and land-
cover classification [18].

A. HSI Classification: Challenges

In remote sensing, the data captured by imaging spectrom-
eters are particularly interesting due to a large amount of
spectral–spatial information comprised in their data products.
In fact, the potential of hyperspectral images (HSIs) lies in the
ability to simultaneously capture hundreds of images from the
same area on the Earth’s surface, by measuring the reflectance
of terrestrial materials at different wavelength channels along
the electromagnetic spectrum [19], usually covering the visi-
ble, near-infrared (NIR), and shortwave infrared (SWIR) spec-
trum [20] between 400 and 2500 nm. As a result, the HSI scene
forms a multidimensional data cube, where HSI pixels contain
the contiguous reflectance spectra of the observed materials.
These spectral signatures can be understood as fingerprints,
being each one unique associated with each type of material,
and allowing for a detailed characterization of the surface of
the Earth. The recent literature contains a large number of
scientific works that take advantage of the great amount
of information contained in HSI data cubes in tasks related to
pattern recognition [21], [22]. In particular, HSI data have been
widely used for land-cover classification tasks, where well-
known machine learning techniques have been traditionally
adapted and applied to categorize the content of each HSI
pixel. In this sense, popular classifiers, such as support vector
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machines (SVMs) [23], random forests (RFs) [24], artificial
neural networks (ANNs) [25], or multinomial logistic regres-
sion (MLR) [26], have been usually implemented as pixelwise
methods to exploit the rich spectral information contained by
each HSI sample in an isolated way. However, the performance
of these methods suffers from several limitations due to
the intrinsic characteristics of HSI data (e.g., the curse of
dimensionality, noise, and spectral variability).

On the one hand, the spatial resolution of HSI scenes is
usually low compared with that of other EO instruments, so the
spectral composition of a pixel is, in fact, a combination
of the signatures of several materials that form that pixel.
Also, variations in surface illumination introduce changes
in spectral signatures, which can be attenuated depending
on direct lighting (sunny areas) or reflected/scattered radi-
ation (shaded areas). In addition, significant distortions are
introduced into the spectra during the acquisition process
due to sensor inaccuracies and uncontrolled environmental
disturbances. As a result, HSI data exhibits high intraclass
variability and interclass similarity, hampering the reliability
of spectral classifiers.

On the other hand, the large spectral dimensionality can
also further complicate the classification process, as it imposes
significant storage and processing restrictions [27], [28] while
increasing exponentially the volume of the feature space,
which, in turn, makes available data widely scattered (the so-
called peaking paradox [29]–[31]). This leads to two major
implications: first, more training data are needed to reliably
cover all spectral features; second, more parameters has to
be introduced in the classification method. By adding more
parameters to the classifier, the error estimation becomes
also more complex, hampering the optimization of the loss
between the desired classification result and the one obtained
by the model, i.e., the available samples are not enough
to accurately estimate the statistical parameters that define
the land-cover classes present into the scene. As a result,
spectral-based classification methods quickly over/under-fit
their performance [32]. This, coupled with the high variability
of the spectral signatures, turns the HSI data classification task
into an ill-posed problem that is highly affected by the curse
of dimensionality [23], [33]. Moreover, the increase in the
number of statistical parameters (together with the high dimen-
sionality of the HSI data) results in high memory consumption,
increasing also the number of arithmetic operations employed
by the model, so the computational load is negatively affected.

B. CNNs for HSI Data Classification

In this context, algorithms inspired by deep learning [34]
are able to handle such dimensionality issues in a more
effective way through the hierarchical learning of deep fea-
tures extracted from the data [35], yielding a wide range
of models with great generalization and expressivity prop-
erties [36], [37] that provide state-of-the-art predictive capa-
bilities in many research fields [38], [39]. In particular, due
to computing advances in both hardware platforms and soft-
ware frameworks, deep learning classifiers have profoundly
impacted the remotely sensed HSI classification field in recent

years [40], [41], being the convolutional neural net-
work (CNN) a highly representative classifier [42]–[48] due to
its ability to extract and learn deep and abstract feature repre-
sentations of the original input data, being able to model com-
plex nonlinear relationship within the data. Its n-dimensional
kernel-based architecture (with n = 1, 2, or 3 depending on
whether it is applied to the spectral, spatial, or spectral-space
dimensions) allows not only for the exploitation of the spectral
content of the HSI scene but also for the natural integration
of spectral and spatial information, which has proven to
reduce the classification uncertainty by combining each pixel
spectra with the spatial-contextual information provided by its
neighbors (such as object shapes, textures, and geometrical
structures) [49], [50]. As a result, convolutional-based models
for HSI data classification are now able to achieve excellent
performance, positioning themselves as the current state of the
art in the field [51]–[53].

C. Computational Complexity of CNNs in HSI Classification
and Existing Optimizations

Despite the outstanding results obtained by CNN-inspired
architectures, these models rely on 2-D/3-D convolution lay-
ers, where the lth layer defines a kernel as the data tensor

W(l) ∈ R
n(l)

k ×n(l)
k ×n(l−1)

f ×n(l)
f composed of n(l)

f filters with spatial

size n(l)
k × n(l)

k and channel size n(l−1)
f that overlap and slide

the input volume through a stride parameter, as a sliding-
window algorithm, with the purpose of aggregating the spatial
and spectral information contained into the HSI scene. Some
of the most usual spatial kernel sizes range from 3 × 3 to
11× 11 and 29 × 29 [54]. In this regard, it should be noted
that each convolution layer involves ((n(l)

k · n(l)
k ) + 1) · n(l)

f
parameters at least, which, in a deep architecture, means that
millions of parameters must be not only correctly adjusted but
also computed along with the feature volumes. In fact, each
CNN model exhibits the complexity indicated by the following
equation:

O

(
L∑

l=1

n(l−1)
f · n(l)

k · n(l)
k · n(l)

f ·m(l) · m(l)

)
(1)

where l corresponds to the index of the current layer, L being
the number of convolution layers (i.e., the depth of the model),
n(l−1)

f and n(l)
f are the number of filters of the (l−1)th and lth

layers, respectively (i.e., the width of the layers),1 n(l)
k is the

spatial size of the current layer (i.e., the length), and m(l) is the
spatial size of the resulting output feature volume [55]. In this
sense, it is easy to observe that spatial convolutions nk×nk are
quite expensive, increasing both the computational time and
the model’s size quadratically with respect to nk [56]. This
can be significantly exacerbated by the large dimensionality
of HSI data, involving an expensive computational burden.

Although some strategies have been developed to reduce the
spatial size of the convolution layers through bottleneck-based
techniques [57], distributing the computing load between

1It must be noted that, as n(l−1)
f is the number of filters of the previous

layer, it will indicate also the number of channels contained into the input
feature volume of the lth layer.
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all layers by controlling the spectral–spatial dimensions of
the feature volumes [58], adapting depthwise convolutional
implementations [59], [60], or even redesigning the operational
blocks as a continuous-time evolving model [61], few efforts
have been devoted to reducing the number of model parame-
ters and the floating-point operations (FLOPs)2 in those deep
convolutional-based architectures for HSI data classification.

D. Proposed Contribution and Organization of this Article

To address the aforementioned issues, this article proposes
a new efficient CNN model for HSI data classification, which
is inspired by parameter-free and zero-FLOP convolution lay-
ers [56]. In particular, instead of sliding kernels, the operating
layers developed to perform spectral–spatial feature extraction
are based on shift operations with pointwise convolutions [56],
which replicates the movement through each feature volume’s
channel across different spatial directions while performing
the aggregation of the spatial information through 1 × 1
convolutions. As the shift operation requires neither FLOPs
nor parameters, the resulting network is more efficient in
terms of computational performance and memory consump-
tion. Also, precisely, because the proposed model does not
require trainable parameters, the complexity of the network is
also reduced, avoiding the degradation of classification results
when training with very few labeled samples.

The proposed model has been tested using five popular HSI
scenes and compared with the traditional CNN model. The
obtained results demonstrate that our newly proposed approach
is able to reach similar performance in terms of accuracy while
significantly reducing both the number of parameters and the
FLOPs employed.

The remainder of this article is organized as follows.
Section II introduces the methodology employed by our newly
proposed shift-based convolution layers for HSI data classifi-
cation. Section III validates the performance of the new model
by providing a detailed discussion of the results obtained using
five different HSI data sets to perform a comparison with the
current state-of-the-art HSI classifiers. Section IV concludes
this article with some remarks and hints at plausible future
works.

II. PROPOSED METHODOLOGY

A. Spatial Convolution

CNN models can be regarded as a deep stack of L
operational blocks where, considering an input HSI data

volume denoted by X(l−1) ∈ R
m(l−1)×m(l−1)×n(l−1)

f , the lth
block performs a feature extraction stage composed of two
main steps, i.e., the data transformation of the input volume
and the generation of the corresponding neuronal responses

as an output feature volume X(l) ∈ R
m(l)×m(l)×n(l)

f through

2This article will take as a reference the number of arithmetic operations
(also FLOPs) employed by the deep classification methods, to give an
approximate estimation of their computational complexity. Note the difference
between FLOPs and FLOPS, where the second concept refers to FLOPs
per second, which is a measure of a computer’s performance, to indicate a
rate between the number of operations that the hardware device can perform
in one second.

convolutional and linear/nonlinear activation layers (see the
following equation):

X(l) = H(C(X(l−1), W(l), b(l))) (2)

where H(·) indicates the activation function (usually a rectified
linear unit (ReLU) [62]) and C(·) represents the convolution
operation applied over the input data through the current

convolutional kernel W(l) ∈ R
n(l)

k ×n(l)
k ×n(l−1)

f ×n(l)
f and the bias

vector b(l) ∈ R
n(l)

f . Delving into convolution, this layer can
be described as a linear operation that aggregates spatial-
contextual information, combining it with spectral character-
istics by the sum of dot products between the kernel weights
and the input volume data (see Fig. 1). Equation (3) illustrates
the computation of the output element (i, j) of the zth filter
(being z = {1, . . . , n(l)

f }) that belongs to the lth convolution
layer

x (l)
i, j,z =

∑
î , ĵ ,t̂

w
(l)
î, ĵ ,t̂,z

· x (l−1)

i+ĩ , j+ j̃,t̂
+ b(l)

z (3)

where i, j and î , ĵ are the spatial indices that cover the input
and output volumes and the kernel weights, respectively, being
ĩ = î − �m(l−1)/2� and j̃ = ĵ − �m(l−1)/2� the recentered
spatial indices, while z and t̂ are the spectral indices that cover
the data and weight volumes along the channel dimension.
Looking at (2) and (3), we can observe that each convolution
layer involves ((n(l)

k · n(l)
k ) + 1) · n(l)

f parameters, considering
the layer’s width, length, and the number of biases. In this
sense, each layer exhibits a quadratic cost with respect to
the kernel length. In addition, the time complexity of the
entire CNN model also grows quadratically with respect to
the kernel size [see (1)]. This results in a large number of
parameters to be stored (ranging from the thousands to the
millions) and a huge amount of operations to be computed,
imposing many restrictions on both storage and computing
resources. To overcome this problem, we introduce a compact
shift-and-pointwise strategy similar to the one in [56] and [63]
to perform efficient HSI data classification.

B. Avoiding Spatial Convolutions Through the
Shift Operation

The proposed shift-based network can be understood as an
adaptation of the depthwise convolution [64], [65]. As we can
observe in Fig. 1, the depthwise convolution layer divides its
operation into two steps: the first one applies a single filter to
each input channel, i.e., it slips one filter of size k(l) × k(l)

along a single channel of the input data X(l−1) to extract
spatial features, while the second step applies a pointwise
convolution (1 × 1 convolution) to combine the data along
the channels. However, although this two-step strategy can
reduce the number of parameters (and also the computational
cost), the implementation of depthwise convolution requires a
significant amount of memory accesses [66], being the input–
output (I/O) memory operations several orders of magnitude
slower and more energy-consuming than the convolution’s
FLOPs. Thus, in the end, the desired optimization of time
and resources cannot be achieved.
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Fig. 1. Illustration of the traditional spatial convolution layer in a CNN architecture—which obtains the output volume X(l) in a single step by applying

a kernel W(l) ∈ R
n(l)

k ×n(l)
k ×n(l−1)

f ×n(l)
f —versus a depthwise separable convolution—which obtains the output volume X(l) in two steps by applying n(l−1)

f

separable kernels of size n(l)
k × n(l)

k × 1—and a pointwise convolution—composed of n(l)
f filters of size 1× 1× n(l−1)

f .

To overcome this limitation, the shift-based convolution
defines also a two-step process. In the first step, a kernel

W(l) ∈ N
m×m×n(l−1)

f 3 is defined with the same spatial and
channel dimensions as those of the input data volume. This
kernel is applied by covering the entire X(l−1) following

x̃ (l)
i, j,t =

∑
î, ĵ

w
(l)
î, ĵ ,t
· x (l−1)

i+ĩ , j+ j̃,t
(4)

where each w
(l)
î, ĵ ,t
∈ {0, 1} depending on

w
(l)
î, ĵ ,t
=
{

1, if î = in f
(l−1) and ĵ = jn f

(l−1)

0, otherwise.
(5)

Here, in f
(l−1) and jn f

(l−1) are two channel-dependent indices

that set one of the values of W(l)

:,:,n(l−1)
f

to be 1 and the rest

to be 0, that is, they are not learnable parameters. Depending
on the location of the nonzero element, the shift operation
will be performed in one direction or the other. This means
that the tth filter in W(l) (with t = 1, . . . , n(l−1)

f ) only
contains one nonzero value to indicate the shift direction,
so W(l)

:,:,n(l−1)
f

can be considered as a shift matrix (see Fig. 2).

In this context, the spatial information contained into the
input volume is processed, resulting in the output data volume

X̃ ∈ R
m×m×n(l−1)

f . Now, we can combine the information
across the channel domain by including a pointwise convolu-

tion defined by n(l)
f filters of size 1× 1× n(l−1)

f as the second

step. In the end, the output data volume X ∈ R
m×m×n(l)

f is
obtained.

Following this, we can avoid the extensive computations
required by both standard spatial convolutions and depthwise
separable convolutions since the shift operation does not
require parameters to be learned and does not involve FLOPs

3In the shift-based convolution layer, both the input and output data volumes
can maintain the same spatial dimension; thus, to simplify the notation,
we assume m(l−1) = m(l) = m, while keeping f (l−1) and f (l) for the
channel dimension.

Fig. 2. Illustration of the shift-based convolution layer for an input data
volume with spatial size set to m = 3. Note that, for a m ×m input volume,
m2 different shift operations (or directions) are allowed. If m < n(l−1)

f , all
shift directions can be applied to the data. Also, we can group the layers and
apply the shift operation over one group following one direction.

to compute. Instead, it only adjusts the data channels in some
directions through some memory operations [56], so it can be
considered as a nonarithmetic layer.

C. Implementing the HSI Shift-Based Neural Network

It must be noted that, if we consider m × m input vol-
umes, m2 different shift directions are allowed. Moreover,
considering input volumes with n(l−1)

f channels, we can obtain

(m2)
n(l−1)

f different shift kernels, so the search for the optimal
combination of shift kernels can grow quadratically with
the spatial size of the data and exponentially with its spec-
tral dimensionality, which makes it prohibitively expensive.
To avoid this, grouped-shift is performed [63], where the
input channels are divided into �n(l−1)

f /m2� groups. Then, for
all the channels that compose one group (also denoted as a
shift group), the same shift direction is assigned heuristically,
in order to cover all kernel dimensions. Moreover, pointwise
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convolution is applied before and after the shift-based layer,
with the aim of making it invariant to the permutation of input
and output channels [67]. This avoids the mapping of each
channel to a shift group, which is a very expensive combi-
natorial problem, in the sense that any arbitrary permutation
for the shift kernel can be chosen after setting each shift
group (disregarding the channel order) since the two pointwise
convolutions allow different permutations of the shift to be
equivalent.

With this in mind, a new shift-based neural network for
spectral–spatial HSI data classification has been developed by
implementing two highly differentiable parts in the proposed
network: 1) the feature extractor layers and 2) the classifi-
cation layers. These layers are explained, in detail, in the
following.

1) Shift-Based Feature Extractor for HSI Data Processing:
Like any standard CNN for HSI data classification [52], our
network has a feature extraction stage that learns different
hierarchical and abstract representations obtained from the
original input data. The network’s input is extracted from a
normalized HSI scene by cropping the image into patches of
m×m pixels centered on the target pixel xm/2+1,m/2+1 ∈ R

n
c ,

being nc the number of spectral bands and setting m = 11 [41].
Also, with the aim of taking advantage of border pixels,
a mechanism for mirroring the HSI scene edges has been
implemented [52].

As we can observe in Fig. 3, HSI data patches are sent to the
feature extractor. The first group of layers performs a standard
3× 3× nc × 16 convolution over the input data, followed by
batch-normalization [68] and a nonlinear activation function
implemented via ReLU [62]. In this sense, the input data
is transformed into a more suitable form, being the spatial–
spectral data downsampled to 9 × 9 × 16. On the one hand,
this reduces the input noise, and on the other hand, we extract
compact and abstract features that will become more robust
and discriminative as the network is trained, being determinant
for the final classification output.

After extracting the first features, three shift blocks are
applied. Inspired by residual blocks [58], each shift block
follows the pointwise convolution-batch normalization-ReLU-
shift-pointwise convolution-batch normalization-ReLU struc-
ture, where the input and output volumes are combined
through an additive shortcut connection. On this wise,
the block’s input is first processed by a 1× 1× n(l−1)

f × n(l)
f

convolution to provide invariance to different channel per-
mutations. Then, the shift-based layer reorganizes the spatial

information, while the second 1 × 1 × n(l)
f × n(l)

f pointwise
convolution combines the spectral information across the input
channels. Finally, the input and output volumes are com-
bined through the shortcut connection to reuse information,
improving the forward step by avoiding data degradation and
enhancing the back-propagation by avoiding the vanishing
gradient problem. Related to this, it must be noted that the
first shift block maintains the same spectral size of the data
volumes, i.e., n(l−1)

f = n(l)
f , so the shortcut applies an identity

function. However, the second and third shift blocks elongate
the number of channels (in particular, the first pointwise
convolution), i.e., n(l−1)

f �= n(l)
f , so a pointwise convolution

TABLE I

PROPOSED NETWORK TOPOLOGY

layer is included into the shortcut to adapt the number of input
channels to the number of output channels.

We can easily modify the behavior of these shift blocks to
work as a bottleneck (reducing the number of channels and
then increasing them) or an inverted bottleneck (increasing the
number of channels and then reducing them) by introducing
an expansion rate ε to scale the number of channels in the
pointwise convolution layers of every shift block. To achieve
this, the first convolution is defined as 1× 1× n(l−1)

f × n(l)
f · ε,

while the second one is in fact defined as 1×1×n(l)
f ·ε×n(l)

f .
Finally, the resulting output volume is processed and

reshaped into a vector form by an average pooling layer [69].
Then, the obtained feature vector is sent to the classifier.

2) Classification Layers for HSI Data Categorization: The
adopted classifier is a multilayer perceptron (MLP) composed
of one fully connected (FC) layer. The obtained feature volume
is reshaped into a vector of 64 elements and sent to the FC
layer, which contains c perceptrons, being c the number of
classes. The final activation function is the softmax. Table I
provides the topology details of the proposed shift-based net-
work for spectral–spatial HSI data classification. Furthermore,
the implemented model has been trained by the stochastic
gradient descend (SGD) optimizer, employing 200 epochs and
a learning rate of 0.01, and with a batch size of 100 samples.

III. EXPERIMENTAL RESULTS

This section demonstrates the benefits of our newly
proposed shift-based network for spectral–spatial HSI data
classification in terms of both computational performance and
accuracy. Focusing on computer and storage requirements,
we have measured the the training time required, the number of
learning parameters required, and the number of FLOPs con-
sumed by the proposed architecture. In this context, the num-
ber of FLOPs is calculated following (1). As the proposed
network can be divided into three main parts, i.e., the head
(composed of a first convolution layer), the body (composed
of three shift-based blocks), and the final classifier (composed
of one FC layer), we can obtain the FLOPs of each part as
follows. The first convolution unit involves FLOPs_C1, which
can be obtained as

FLOPs_C1 = nc · n(1)
k · n(1)

k · n(1)
f · m(1) ·m(1) (6)
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Fig. 3. Graphical overview of the proposed shift-based architecture for HSI data classification.

where nc is the original number of spectral channels, n(1)
f = 16

and n(1)
k = 3 define the number of filters and the spatial size

of them, respectively, and m(1) = 9 denotes the spatial size
of the output volume. Then, after the first convolution layer
comes the body of the proposed network, which is composed
of three shift blocks. Each one comprises two pointwise
convolution layers and one shift layer. Moreover, the last two
blocks include a shortcut connection, which is also a pointwise
convolution. As the shift layer does not introduce FLOPs,
only the pointwise convolution layers involve some FLOPs.
In addition, these pointwise layers do not affect the spatial
size of the feature volumes, so we can simplify m(l) = 9 for
every convolution layer l in the network. Equation (7) provides
the general form to calculate the number of FLOPs of each
block

FLOPs_Bn = n(l−1)
f · 1 · 1 · n(l)

f · 9 · 9← 1st Conv.

+ n(l)
f · 1 · 1 · n(l+1)

f · 9 · 9← 2nd Conv.

+[n(l−1)
f · 1 · 1 · n(l+2)

f · 9 · 9]
← Shortcut Conv. (7)

where FLOPs_Bn identifies the block (where n = 1, 2, 3),

n(l−1)
f defines the number of input channels, and 1 · 1 · n(l)

f ,

1 · 1 · n(l+1)
f , and 1 · 1 · n(l+2)

f are the kernel sizes of the
first, second, and shortcut pointwise convolution (for blocks
2 and 3), respectively. Finally, the number of FLOPs within
the FC layer can be obtained as

FLOPs_FC = dim_vec · c (8)

where dim_vec = 64 is the network output that has been
vectorized through the average pooling layer and c is the

number of different land cover classes. Once all the FLOPs
have been obtained, the number of total FLOPs can be
calculated as

FLOPs = FLOPs_C1+ FLOPs_B1 + FLOPs_B2

+ FLOPs_B3+ FLOPs_FC. (9)

Also, we can obtain the number of FLOPs of the shift-based
blocks (denoted as FLOPsBLOCK) as follows:
FLOPsBLOCK = FLOPs_B1+ FLOPs_B2+ FLOPs_B3.

(10)

Besides, to evaluate the classification accuracy, the over-
all (OA), average (AA) accuracies, and kappa coefficient have
been considered.

In the following sections, we will explain, in detail, the envi-
ronment in which the experiments have been conducted.
We also describe the HS data sets considered and the obtained
results.

A. Experimental Configuration

With the aim of testing the performance of the proposed
shift-based deep model for spectral–spatial HSI classification,
a battery of experiments has been performed on a desk-
top computer equipped with an X Generation Intel Core
i9-9940X processor with 19.25M of Cache and up to 4.40 GHz
(14-core/28-way multitask processing), installed over a
Gigabyte X299 Aorus, 128 GB of DDR4 RAM. Also,
a graphic processing unit (GPU) NVIDIA Titan RTX GPU
with 24-GB GDDR6 of video memory and 4608 cores has
been employed. The operating system is Ubuntu 18.04.3.
In order to efficiently implement the proposed approach, all
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Fig. 4. Number of available labeled samples in the Indian Pines (IP), University of Pavia (UP), Salinas Valley (SV), and Kennedy Space Center (KSC) HSI
data sets.

tested models have been parallelized on the available GPU
using Pytorch.

B. HSI Data Sets

In order to test the proposed model on aerial and satellite
HSI scenes, five public4 and widely used HSI data sets
have been considered in our experiments: Indian Pines (IP),
University of Pavia (UP), Salinas Valley (SV), Kennedy Space

4Available online, including the training and test sets, from http://dase.grss-
ieee.org

Center (KSC), and University of Houston (UH). Fig. 4 shows,
for each data set, its corresponding ground-truth information
with the number of samples per class. In the following,
we summarize the characteristics of each data set.

1) Indian Pines (IP): The IP data set was gathered
by the airborne visible/infrared imaging spectrometer
(AVIRIS) [20] sensor in 1992, and it covers an area
comprising different agricultural fields in Northwestern
Indiana, USA. This image contains 145 × 145 pixels
with a spatial resolution of 20 meters per pixel (mpp)
and 224 spectral bands in the wavelength range from

Authorized licensed use limited to: Antonio Plaza. Downloaded on October 30,2020 at 10:12:05 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

400 to 2500 nm. In our experiments, four null bands
and other 20 bands corrupted by the atmospheric
water absorption effect have been removed, keeping the
remaining 200 bands. The IP ground truth contains a
total of 16 mutually exclusive land cover classes.

2) Salinas Valley (SV): The SV image was also captured
in 1998 by the AVIRIS instrument over the agricultural
land of Salinas Valley in California, USA. The data
comprise of 512 × 217 pixels with a spatial resolution
of 3.7 mpp. As for the IP data set, the water absorption
bands, i.e., channels from 108th to 112th and from
154th to 167th, together with the 224th band, have been
discarded. A total of 16 different land cover classes are
included in the SV ground-truth data.

3) Kennedy Space Center (KSC): As IP and SV scenes,
the KSC image was collected by the AVIRIS instrument
(1996) over the Kennedy Space Center in Florida, USA.
After removing the noisy bands, the KSC scene contains
176 bands (ranging from 400 to 2500 nm) with 512 ×
614 pixels (20 mpp spatial resolution) and 13 ground-
truth classes.

4) University of Pavia (UP): The UP data set was gathered
by the Reflective Optics System Imaging Spectrome-
ter (ROSIS) sensor [70] in 2001 over the University of
Pavia, Northern Italy. This image contains 103 spectral
bands ranging from 430 to 860 nm after several noise-
corrupted bands have been discarded, and it comprises
610 × 340 pixels with 1.3-mpp spatial resolution. The
available ground truth contains nine different class
labels.

5) University of Houston (UH): The UH scene [71]
was acquired by the Compact Airborne Spectrographic
Imager (CASI) sensor [72] over the Houston Univer-
sity campus in June 2012, collecting spectral–spatial
information from an urban area. This scene comprises
114 bands and 349 × 1905 pixels with wavelengths
ranging from 380 to 1050 nm. Twenty-one principal
components have been considered during classification
tasks. Its ground-truth information comprises 15 dif-
ferent land cover classes, providing two spatial-disjoint
subsets of training and testing samples.

C. Performance Evaluation

With the aim of evaluating the computational performance
obtained by the proposed shift-based network for spectral–
spatial HSI data classification in terms of training times,
number of learnable parameters and FLOPs, and to make a
thorough analysis of the implemented deep learning archi-
tecture in terms of accuracy, several experiments have been
conducted, considering for each one of the five Monte Carlo
runs.

1) The first experiment focuses on the classification accu-
racy obtained by the proposed shift-based network com-
pared with a standard ResNet and a reduced-parameter
ResNet (ResNetR3) when several training parameters
are considered; in particular, the OA evolution has been
measured by considering 1%, 3%, 5%, 10%, and 15%

of the available labeled samples per class for the IP,
SV, KSC, and UP scenes. In this context, ResNet and
ResNetR3 models have been implemented with the same
architecture as the shift-based network by replacing
the shift blocks with their residual counterparts, which
comprises of two 3 × 3 convolution layers with zero-
padding to maintain the same spatial dimensions along
with the convolution layers. As the standard ResNet con-
tains a large number of parameters in comparison with
the shift-based network, we reduce the ResNetR3 para-
meters in every convolution layer by a factor R = 3 in
order to approximately match the number of parameters
in the proposal. In particular, the number of filters of
each layer has been reduced by n(l)

f /R. It must be noted
that ε = 1 is considered for the shift-based network.

2) The second experiment extracts more information about
the classification performance obtained by the pro-
posed network, the standard ResNet, and the reduced
ResNetR3 when processing HSI data. In this sense,
the classification per class, OA, AA, and kappa coef-
ficient have been measured for the IP (with 5% of
training data), KSC (5%), SV (1%), UP (1%), and
UH scenes. Moreover, to measure the computational
and memory consumption of the considered models,
the training time, the number of FLOPs, and the number
of learnable parameters have been obtained for both
the entire architecture and the body, composed only
by the three shift and residual blocks, with the aim of
specifically examining the improvement of the proposal.

3) The third experiment conducts a more focused study
on the expansion ε and reduction R parameters of
shift-net and ResNetRx (being x the reduction value),
respectively, in terms of the number of parameters
and FLOPs, together with their impact on the model’s
OA. In this regard, the IP (with 5% of training data),
KSC (5%), SV (1%), UP (1%), and UH scenes have
been considered.

4) The fourth experiment makes a comparison of the pro-
posed method with some current state-of-the-art tech-
niques by considering multiple spatial sizes for the input
patches, i.e., 5 × 5, 7 × 7, 9 × 9, and 11 × 11. In par-
ticular, the proposed shift-based network has been com-
pared with five spectral–spatial networks for HSI data
classification: the spectral–spatial ResNet (SSRN) [57],
the pyramidal ResNet (P-RN) [58], the densely con-
nected ResNet (DenseNet) [73], the dual-path network
(DPN) [60], and the capsule network (CapsNet) [53].
In this experiment, the IP (with 20% of training data),
KSC (20%), and UP (10%) scenes have been considered.

1) Experiment 1: OA Evolution With Different Training
Percentages: In order to explore the performance of the
proposed model when different amounts of training samples
are available, this experiment analyzes the impact over the
resulting OA when different percentages of the available
labeled data are employed to train the model. Related to this,
four HSI scenes have been considered for this experiment
in order to ensure that our model can work with different
types of images and spectral–spatial resolutions. In particular,
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Fig. 5. Classification results obtained by the proposed shift-based network, the ResNet, and the ResNetR3 considering four real HSI scenes with different
amounts of training samples: (a) IP, (b) KSC, (c) SV, and (d) UP.

TABLE II

CLASSIFICATION RESULTS OBTAINED BY SHIFT-BASED NETWORK, STANDARD RESNET, AND REDUCED-PARAMETER RESNETR3 USING 5% OF THE

AVAILABLE LABELED DATA FOR TRAINING WITH THE IP AND KSC SCENES AND 1% FOR TRAINING WITH THE SV AND UP SCENES. ALSO,
THE FIXED TRAINING SAMPLES PROVIDED FOR THE UH SCENE ARE USED. THE INPUT SPATIAL PATCH SIZE HAS BEEN SET TO 11× 11

IN ALL CASES (PARAMETERSBLOCKS AND PARAMETERS DEFINE THE NUMBER OF PARAMETERS CONSIDERING ONLY THE THREE
SHIFT/RESIDUAL-BASED BLOCKS AND THE ENTIRE MODEL, RESPECTIVELY. SIMILARLY, FLOPSBLOCKS AND FLOPS

PROVIDE THE NUMBER OF FLOPS CONSIDERING ONLY THE THREE SHIFT/RESIDUAL-BASED

BLOCKS AND THE ENTIRE MODEL, RESPECTIVELY)

the IP, UP, KSC, and SV scenes have been used with 1%, 3%,
5%, 10%, and 15% of labeled samples per class for training
(and the remaining samples used for testing). In addition,
three networks with similar architectures have been tested:
the proposed shift-based network with ε = 1, a standard
ResNet, and a reduced-parameter ResNetR3 (with reduction
factor R = 3).

Fig. 5 shows the obtained results after five Monte Carlo
iterations. We can observe a quite similar behavior between
the different data sets. When we consider a training percentage
of 1%, the reduced-parameter ResNetR3 achieves the worst
OA result, while the proposed shift-based network and the
ResNet are able to reach the best results. We can particularly
highlight the result obtained by our shift-based network with
the IP and KSC scenes [see Fig. 5(a) and (b)]. This is quite
interesting since these two HSI scenes are particularly complex
to classify due to their lower spatial resolution, which leads
to more highly mixed spectral signatures than, for example,
the UP image [see Fig. 5(d)]. It should be noted that our
proposal implements a model whose number of parameters

is significantly lower than the standard ResNet; however, it is
able to achieve similar or even better classification results,
being much more robust than the standard ResNet when few
training samples are employed.

Furthermore, the OA of the three networks improves by
increasing the number of training samples, being the shift-
based network the model that reaches the best OA results in
almost all cases, achieving very close results to those obtained
by the ResNet in those cases in which the proposal is not the
best. As expected, the three models achieve similar results with
the highest training percentages.

2) Experiment 2: Classification Performance Versus
Computing Requirements: The second experiment follows
the previous experiment, considering also five Monte Carlo
iterations and exploring the classification accuracy reached by
the considered models in each land-cover class, in addition
to the OA, AA, and kappa coefficient values. Moreover, this
experiment shows the training times of each deep network, the
number of parameters required by the models, and the number
of FLOPs executed. In this context, Table II provides both the
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TABLE III

ACCURACY PERFORMANCE IN TERMS OF OA, AA, AND KAPPA VALUES WHEN CONSIDERING SPATIAL
DISJOINT DATA SETS FOR THE PROPOSED NETWORK, STANDARD RESNET, AND RESNETR3

Fig. 6. Classification maps obtained for the IP scene (using 5% of
the available labeled samples). The obtained OAs are shown in brackets.
(a) ResNetR3 (92.11%). (b) ResNet (94.07%). (c) Proposed (95.47%).

parameters and the FLOPs of the entire set of models (which
have been denoted as Parameters and FLOPs, respectively),
as well as those that correspond with the shift-based and
residual blocks (designated as ParametersBLOCKs and
FLOPsBlocks, respectively), i.e., without the first convolution
layer and the FC layer that composes the classifier.

Focusing on the IP scene, we can observe the obtained
classification results per land-cover class in Table II, being
the ones obtained by the proposed model higher than those
achieved when using the standard ResNet and the reduced-
parameter ResNetR3 models. Also, the OA, AA, and kappa
values achieved by the shift-based network are the best: the
OA is 1.4% and 3.36% points higher than that of ResNet and
ResNetR3, respectively; the AA is 2.25% and 4.74% points
higher, respectively, and the kappa is also 1.59 and 3.83 points
better. This behavior is repeated in other challenging HSI
scenes, such as the KSC and UH. In particular, the OA
obtained by the proposed model for the KSC is 0.24 points
better than that of ResNet and 2.13 points higher than that of
ResNetR3, while, for the UH scene, it is 1.62 and 2.96 points
better, respectively. In this sense, we can conclude that both
the ResNet and the ResNetR3 models are significantly affected
by the complexity of these three scenes.

On the contrary, for less challenging HSI scenes, such
as UP and SV (with spectral information that is less spec-
trally mixed and with higher spatial resolution, which can
improve decisively the classification task [41]), the ResNet
and ResNetR3 models improve their results. Focusing on the
SV scene, the ResNet is able to reach the best OA (96.7)
and kappa (96.32) values; however, the shift-based network
(which shows the best AA value—97.82) is able to reach
very similar values, being its OA and kappa only 0.01 points
lower than ResNet. With the UP scene, the ResNet achieves
the best AA (94.53), being only 0.16 points better than the
proposed network, which still exhibits the best OA (96.53) and
kappa (95.39) values. These results are depicted graphically
in Figs. 6–10, where the classification maps provided by

Fig. 7. Classification maps obtained for the KSC scene (using 5% of
the available labeled samples). The obtained OAs are shown in brackets.
(a) ResNetR3 (94.97%). (b) ResNet (96.86%). (c) Proposed (97.10%).

Fig. 8. Classification maps obtained for the SV scene (using 1% of
the available labeled samples). The obtained OAs are shown in brackets.
(a) ResNetR3 (96.32%). (b) ResNet (96.70%). (c) Proposed (96.69%).

each model are reported. The three networks provide typical
spatial–spectral model maps, with the borders between classes
generally well defined and without salt and pepper noise. It is
noteworthy that the proposed network and ResNet achieve
similar results in some images (for instance, the UH), while,
in other images, the proposed network achieves a much more
accurate classification in certain complicated regions of the
scenes (particularly, for the IP and KSC scenes).

In addition to these classification results, which have been
obtained by a random selection of training samples, Table III
provides the accuracy performance of these three networks
considering the IP, UP, and UH scenes without spatial over-
lapping between the training and test sets (the so-called
spatial disjoint images). A reduction in accuracy is observed
for all methods on IP and UP images, either because the
spatial information from the test is no longer available in
training samples or because these samples are more complex
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Fig. 9. Classification maps obtained for the UP scene (using 1% of
the available labeled samples). The obtained OAs are shown in brackets.
(a) ResNetR3 (95.76%). (b) ResNet (96.51%). (c) Proposed (96.53%).

Fig. 10. Classification maps obtained for the UH scene (using the available
fixed training set). The obtained OAs are shown in brackets. (a) ResNetR3
(84.44%). (b) ResNet (85.78%). (c) Proposed (87.40%).

to classify. However, this degradation is less pronounced in
the proposed network compared with standard ResNet: in
particular, ResNet’s OA drops 13.97 points in IP and 4.8 in UP,
while ResNetR3’s OA falls 5.18 points in IP and 3.78 in UP,
and the proposed decreases its OA 5.67 points in IP and
2.94 in UP. Furthermore, the proposed network achieves the
best classification results in terms of OA, AA, and kappa
measurements.

At this point, it is important to emphasize that, con-
sidering Table II, both ResNet and our shift-based model
achieve very similar results in terms of accuracy; however,
the proposed network requires significantly fewer parame-
ters than the standard ResNet. In particular, considering the
whole set of models, the proposed shift-based network needs
65 536 fewer parameters than the ResNet in each scene.
Focusing on the shift and residual blocks, the proposed model
has to learn 11 392 parameters to perform correctly, while
the ResNet needs 76 928 parameters to reach its classification
performance, that is, the shift blocks are able to reduce
65 536 parameters in comparison with the residual blocks. This
means that the shift-based network consumes significantly less
memory than the standard ResNet to store the parameters
while reducing the number of FLOPs when applying the

convolutional kernels. In particular, the proposed network
consumes 5 308 416 FLOPs less than the standard ResNet in
every scene. Focusing on the IP scene, if we compare the
FLOPs consumed by the entire proposed network (3 204 736)
with those consumed by the shift blocks (870 912), we can
determine that the first convolution layer and the two FC layers
consume 2 333 824 FLOPs, i.e., they consume 2.68× more
than the three shift blocks. On the contrary, in the ResNet
model, the three residual blocks (6 179 328 FLOPs) consume
2.65× more FLOPs than the first convolution layer and the FC
layers together (2 333 824 FLOPs), so the shift block consumes
significantly less than a residual block (7.10× less).

In order to make a more fair comparison between neural
models with the same number of parameters and FLOPs,
we have implemented the ResNetR3 with a parameter reduc-
tion of R = 3, where the number of filters of each
layer has been reduced by n(l)

f /R. In this sense, the entire
ResNetR3 requires, on average, 61 952.8 parameters less
than the standard ResNet. With this significant reduction,
we can observe that the number of parameters of the entire
ResNetR3 model is closer to the shift-based network than to
the standard ResNet, being the number of parameters even
smaller than that of the shift-based network with the SV scene.
However, despite the large reduction in parameters applied in
all the convolution layers, if we focus only on the residual
blocks, we can clearly see that they need to adjust 13 106 more
parameters than the proposed block, i.e., 2.15× more para-
meters. This will affect the number of FLOPs executed by
the residual blocks of the ResNetR3 model. In particular,
comparing the FLOPs of the whole set of considered models,
ResNetR3 seems to run fewer FLOPs than the shift-based
network (59 254 FLOPs less). This is because the reduction
factor is also applied to the first convolution layer, consider-
ably reducing the number of parameters and operations to be
performed on the data. However, if we focus on the residual
blocks, the ResNetR3 consumes 1 084 266 more FLOPs than
the proposed model, i.e., 2.25× more FLOPs. In addition,
despite having a similar architecture with a comparable num-
ber of parameters and FLOPs, the classification results of
ResNetR3 are significantly worse than those achieved by the
proposed network.

Finally, we show the training times of each model for
each HSI data set. As we can observe, our model is slightly
slower than the ResNet and ResNetR3 models. This may
be because, all three models have been optimized on GPUs,
so the arithmetic operations (the matrix multiplication between
weight and data) have been properly parallelized on the device,
while the shift operation has to fix the number of channels for
each shift direction (in order to create the shift groups) and
then move the data of each channel across the selected spatial
direction. These results suggest that these memory operations
should be optimized to reduce computational times.

These results strongly support the proposed model since it
is not only able to reduce the number of required parame-
ters in comparison to traditional (spatial-based) convolutional
layers—which significantly reduces both memory consump-
tion and execution time by reducing also the number of
operations to be executed on the HSI data—but is also able
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Fig. 11. Overall accuracies (OAs)—obtained by the proposed shift-based network and the equivalent reduced-parameter ResNet—versus the number of
required (top) parameters and (bottom) FLOPS for the considered scenes: (a) IP, (b) UP, (c) KSC, (d) SV, and (e) UH.

to match or even outperform the accuracy results of com-
plex models, such as the ResNet and the reduced-parameter
ResNetR3.

3) Experiment 3: Comparison Between the Expansion Rate
ε and the Reduction Factor R: Related to the last part of
the previous experiment, we now delve into the relationship
between the shift-based network (with a given expansion
rate ε) and its—similar—residual model (with the correspond-
ing reduction factor R) by carefully monitoring the effect of
the number of parameters and FLOPs of the blocks on the
achieved OA. The models have been trained by considering
3% of the available labeled samples from the UP and SV
scenes and 5% of the available labeled samples from the IP and
KSC images. For the UH scene, we use the labeled samples
from the available (spatially disjoint) training–test set to adjust
the model parameters.

To obtain the shift-based models with different numbers of
parameters (and therefore of FLOPs), a search of ε in the range
[0.1, 10] has been conducted, implementing both a typical
bottleneck block (that first strangles the spectrum and then
expands it) and an inverted bottleneck block (that first expands
the spectrum and then reduces it). Also, to implement the
equivalent reduced-parameter version of the ResNet, a search
of R in the range [1, 11] has been carried out. The obtained
results are reported in Fig. 11. In general, for both models,
the higher the number of parameters, the better the classi-
fication result. However, we must note that ResNet suffers
from a greater impact than the shift-based network when the
number of parameters is lower. On the contrary, the proposed
network is able to maintain a relatively good OA in almost
every scene, dropping just over one percentage point behind
the model with the highest number of parameters and the
model with the lowest one. Moreover, it is very interesting
to emphasize that the proposed model is able to achieve very
good OA values with approximately 3× fewer parameters than
the equivalent ResNet, being also 6× faster. Also, focusing on
the number of FLOPs, our shift-based network obtains an OA
that is approximately 3×-4× higher than the one achieved by
ResNet using the same number of FLOPs (the improvement is
up to 7× in the IP scene with the lowest number of FLOPs).
These results confirm our introspection that, for the same

TABLE IV

OVERALL ACCURACY (%) ACHIEVED BY DIFFERENT APPROACHES WHEN

CONSIDERING DIFFERENT SIZES OF THE INPUT SPATIAL PATCHES.
FOR EACH MODEL, A PARAMETER ESTIMATION HAS BEEN

CONDUCTED IN ORDER TO PROVIDE AN OVERVIEW
OF THE DIFFERENT ARCHITECTURES

number of parameters/FLOPs, our network is able to learn
better and provide higher accuracy scores than conventional
ResNets.

4) Experiment 4: Comparison With Other State-of-the-Art
Models Considering Different Spatial Sizes for the Input
Patch: Our last experiment evaluates the performance of the
proposed network when different spatial sizes are considered
for the input patch. In this sense, input patches with sizes
m = {5, 7, 9, 11} have been considered, employing 20% of
the available labeled samples per class for the IP and KSC
scenes and 10% of the available labeled samples per class for
the of UP image. Furthermore, the obtained results (in terms
of OA and number of parameters) have been compared with
some widely used spectral–spatial deep models that, in fact,
constitute the current state of the art in the field: SSRN [57],
P-RN [58], DenseNet [73], DPN [60], and CapsNet [53].

Table IV reports the obtained results. As we can observe,
the proposed model improves its classification results when
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larger spatial patches are considered, as the other models
do. In addition, its accuracy results are very similar to those
of the current state-of-the-art methods, reaching even higher
accuracies than the SSRN when classifying the IP and UP
scenes. However, as we can observe in the last row of every
scene, the number of parameters needed by our model (30K)
is considerably smaller than that required by the other tested
models. In particular, CapsNet (9.0M) and DenseNet (1.7M)
are the “heaviest” models, requiring millions of parameters.
They are followed by the DPN (370K) and SSRN (360K)
models. This implies that our model requires 12× fewer
parameters than the thinnest model in the current state of
the art, i.e., the SSRN. These results confirm the fact that
the proposed method can achieve accuracy scores that are
comparable to those achieved by the most widely used models
for spatial–spectral classification of HSI images, but requiring
a much lower amount of parameters to be adjusted (and of
operations to be executed), which leads to significant savings
in terms of storage and computational resources.

IV. CONCLUSION

This work proposes a new deep neural network architecture
for spectral–spatial classification of HSIs based on a more
efficient building block in terms of the number of parameters
and FLOPs. Such building block comprises a shift operation
interleaved with pointwise convolutions, where the shift oper-
ation moves each channel of its input feature volume in a
different spatial direction, while the pointwise convolutions
provide invariance to channel permutations. The idea behind
this innovative design is to avoid the use of the traditional
nk × nk spatial convolutions to process the spatial informa-
tion contained in the remotely sensed HSI scene because
these operations are very expensive in computational terms,
requiring the adjustment and learning of a large number of
parameters, which must be applied to the input data as a win-
dowing algorithm. As a consequence, deep networks exhibit
a great computational load, in addition to rapidly tending to
overadjustment due to the large number of parameters to be
trained and the scarcity of tagged hyperspectral data. In this
context, our shift-based network replaces such costly spatial
convolution operations by a two-step process: first, the shift
operation moves the input channels following different spatial
directions in order to mix and combine the spatial informa-
tion of each channel, and then, the pointwise convolution
mixes and combines the spectral information along the feature
volume channels. Opposite to traditional spatial convolution,
the shift operation does not involve parameters to be learned or
FLOPs to be executed, being limited to a simple adjustment
of data in memory, while the cost of the 1 × 1 pointwise
convolution is noticeably less than that of a standard nk × nk

convolution. This provides a new way to, on the one hand,
reduce the computational burden of deep models when fac-
ing HSI data classification tasks and, on the other hand,
to deal with the overfitting problem by working with fewer
parameters.

Our experiments, conducted over five widely used HSI
scenes, demonstrate that the proposed method is able to

match or even improve the classification results of the equiv-
alent residual equivalent model but employing significantly
fewer parameters and executing much fewer operations per
block. Moreover, the obtained results demonstrate that the
proposed method is able to achieve classification accuracies
that are very similar to those obtained by state-of-the-art
spatial–spectral classifiers for HSI images but reducing the
computation cost significantly compared with the five con-
sidered (widely used) spectral–spatial networks, requiring a
significantly lower number of parameters to be adjusted. This
allows our proposal to consume less storage and computational
resources.

As future works, we would like to introduce the shift mech-
anism in other different state-of-the-art networks in computer
vision and remote sensing image processing and also improve
our network efficiency by reducing the cost of moving data
into memory.
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