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Level Set Hyperspectral Image Classification
Using Best Band Analysis
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Abstract—We present a supervised hyperspectral classification
procedure consisting of an initial distance-based segmentation
method that uses best band analysis (BBA), followed by a level
set enhancement that forces localized region homogeneity. The
proposed method is tested on two hyperspectral images of an
urban and rural nature. The proposed method is compared to
the maximum likelihood (ML) method using BBA. Quantitative
results are compared using segmentation and classification ac-
curacies. Results show that both the initial classification using
BBA features and the level set enhancement produced high-quality
ground cover maps and outperformed the ML method, as well as
previous studies by the authors. For example, with the compact
airborne spectrographic imager image, the ML method resulted in
accuracies ≤ 95.5%, whereas the level set segmentation approach
resulted in accuracies as high as 99.7%.

Index Terms—Band selection, classification, dimensionality re-
duction (DR), hyperspectral, image classification, image process-
ing, level sets, remote sensing, segmentation, spectral angle
mapper (SAM), spectral information divergence (SID), vicinal
pixels.

I. INTRODUCTION AND BACKGROUND

WHEN CREATING a thematic map (TM) from a hy-
perspectral image (HSI), neighboring pixels are often

mislabeled, which can cause regions of homogeneous ground
cover to appear heterogeneous. These errors can be caused by
inadequate training data, natural class overlap, or high data
dimensionality, i.e., the well-known Hughes phenomenon [1].
In order to mitigate effects of the Hughes phenomenon, a typi-
cal hyperspectral system will have a dimensionality reduction
(DR) component, which seeks to simultaneously reduce the
data dimensionality and to maximize the class separability.
Commonly used DR methods include principal components
analysis, linear discriminant analysis (LDA), independent com-
ponent analysis, projection-based methods, and methods that
reduce the hyperspectral data to a single scalar measure, includ-
ing the spectral angle mapper (SAM) and spectral information
divergence (SID) metrics [2]–[10].

In HSI classification, some popular approaches include
metric-based methods, such as SAM and SID, contemporary
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methods such as maximum likelihood (ML), kernel-based
methods such as support vector machines, and more recently,
level set methods. The ML classification method [2], [6] is
arguably the most commonly used method for remotely sensed
image classification. In this paper, the authors investigate the
SAM, SID, and ML, where best band analysis (BBA) will be
used to mitigate the Hughes phenomenon. In addition, a level
set approach will be used to enforce regional homogeneity in
the TM. This paper is an extension of the authors’ work in [3],
[7], and [11].

II. LEVEL SETS

For 2-D image segmentation, the level set boundary is the
zero level set of an implicit function φ defined as φ(x, y, t) :
�2 × [0, T ) → �, where � is the set of real numbers, and T
is some large maximum time value for the system. The time
element is artificial and is used in the evaluation of partial
differential equation (PDE) controlling the segmentation. The
level set equation for front propagation with a 2-D speed
function F (x, y), acting normal to the level set curve, is given
by the PDE φt + F |∇φ| = 0, where φt is the partial derivative
of φ with respect to time, and ∇φ is the gradient [12]. The level
set evolves in accordance with the speed function F , and it will
continue to propagate outward (inward) as long as the speed
function is positive (negative). A grid spacing ∆x = ∆y = 1
and time step ∆t = 0.8 are used.

Dell’Acqua et al. extracted and tracked moving clouds using
level sets [13]. Keaton and Brokish used level sets to segment
roads in pan-sharpened IKONOS images [14]. In their ap-
proach, the speed function is controlled by a spectral similarity
term comparing signatures to reference signatures. They ob-
tained good results, but no automated methods were suggested
for choosing the optimal parameters in their speed function.
Their method worked well because of the large spectral and
textural differences between roads and other groundcovers.
A more general method would be required if other image
endmembers are to be segmented.

In [3], [7], and [11], the authors utilized methodologies that
are similar to those used in [14]. Reference [7] was a feasibility
study that used simple methods, and the initial results were
promising [around 80% overall accuracy (OA)]. The speed
function was optimized using BBA and Fisher’s LDA and
stepwise LDA (SLDA) [11]. OAs increased to about 94%. In
[3], the authors used the same methods as in [7] for the spectral
similarity term, and they also used BBA and a modified form of
SAM, which is called scaled SAM. The accuracies increased to
just over 98%.
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III. METHODOLOGY

In the proposed method, feature extraction and optimization,
namely BBA with SLDA, is performed first in order to deter-
mine the best set of spectral bands that discriminate each TM
class. Then, appropriate speed functions are created, and level
set segmentation is performed. The following assumptions are
made about using the level set segmentation based on best band
SAM (BSAM) and best band SID (BSID) metrics. 1) Better
results may be obtained by using BSAM and BSID versus SAM
and SID, which use all of the bands. 2) The BBA method is
restricted to a set of contiguous bands and is implemented as a
fixed length sliding window. 3) A classifier using vicinal pixel
information can perform better than a per-pixel-based classifier.

Assumption 1 is based on previous research [3], [8]–[10],
which used various feature extraction methods, but all used
some form of BBA. Assumption 2 is a compromise used to
make the computation time reasonable. Although the absolute
best results may be obtained from an exhaustive search, this is
typically not feasible in HSI processing. In previous research,
the authors found that band growing, where band groups were
allowed to grow as long as the distance metric improved,
provided slight accuracy improvements at the expense of con-
siderably more computation time [3]. In this paper, the analysis
is restricted to a fixed band group length and to consecutive
bands. This approach was also used in [3] and [10].

Many times in HSI classification, there are regions of a
ground cover class that are generally classified correctly, but the
TM usually contains errors that are made up of small isolated
groups of incorrectly classified pixels. By employing vicinal
(i.e., spatial neighbor) pixel information, the resulting classi-
fication may be enhanced, and the accuracy improved. If the
scene contains areas of mostly homogenous ground cover, then
there should be homogenous classification of pixels in these
areas. The challenge is to correct these types of classification
errors without corrupting the actual natural borders between
ground cover classes.

A. Initial Image Segmentation

Feature extraction and optimization is performed as follows.
1) For each class, analyze the training signature to determine
which set of bands is the most effective for class separation.
2) Use SLDA to optimize the best set of features. 3) For
each pixel, create a feature vector using the optimal reduced
feature for each class. 4) Perform an initial pixel by pixel
classification. 5) Enhance the initial classification using level
sets to force region homogeneity. The BBA algorithm allows
the user to select the discrimination metric (SAM or SID) and
the class separation distance metric, which is either the area
under the receiver operating characteristics curve (ROC AZ) or
Bhattacharyya distance (BD) [6].

The BBA algorithm uses a sliding window with a fixed band
group length and analyzes the signatures using BSAM or BSID.
The best bands are selected using ROC AZ or BD. Then, the
algorithm uses SLDA with forward selection and backward
rejection [11]. This process is repeated for each class. For each
class c and each pixel, let the optimal feature be fc

x,y , which

TABLE I
NUMBER OF SAMPLES OF TRAINING AND TESTING DATA

TABLE II
EXPERIMENTAL BAND LENGTHS FOR FIXED

LENGTH FEATURE OPTIMIZATION

is scalar. Assuming that the image training data have C classes,
then for each image pixel (x, y), a [1 × C] feature vector �fx,y =
[f1

x,y, . . . , fC
x,y]T is created. A minimum Euclidean-distance

classifier is then used to perform initial segmentation.

B. Level Set Segmentation Enhancement

After initial segmentation, level set segmentation enhance-
ment is performed for each class, with the exception of roads
and shadows. These two classes are not processed with the level
set method, because roads are long and narrow, and shadows (at
least, from trees and bushes) are very small, and both would be
eroded by the proposed method.

For each class to be processed with the level set method, a
2-D stopping map is created by treating the BSAM or BSID
feature for each pixel as a random variable and by examining
the cumulative distribution function (cdf). Let Fc(x) be the cdf
for class c, and τc be the smallest value of x with Fc(x) ≥
β, where β = 0.9996 was experimentally chosen. Selecting a
value of β close to 1.0 will account for almost all of the training
data. If a smaller value of β is chosen, then the level set will
not process larger values in the cdf and will provide a more
conservative approach. The stopping map for class c is given
by Gc

x,y = H(fc
x,y − τc), where H(·) is the Heaviside step

function. The 2-D image Gc
x,y will be 1 if the pixel’s feature

vector for that class is suitably small, and 0 otherwise. As
a final preprocessing step, the image Gc

x,y is convolved with
an isotropic Gaussian filter with unity variance and [11 × 11]
region of support, which is denoted as Gσ . This filtering is
frequently used in level set applications to provide smoothing.
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TABLE III
MALL IMAGE EXPERIMENTAL RESULTS—OAS IN PERCENT

The final stopping map is G̃c
x,y = G̃c

x,y ⊗ Gσ , where ⊗ is the
convolution operator.

An [11 × 11] sliding template is used to scan the area around
each pixel in the segmentation TM (the size was chosen experi-
mentally). For each class c, the template counts the total number
of pixels assigned to that class, which is divided by the total
number of pixels. For pixels near the border, the total number
of pixels is the sum of the template pixels that are in the original
borders of the image. Thus, for each pixel (x, y) and a class c,
the following equation is evaluated:

T c
x,y =

∑

Ω(x,y)

δ{TMx,y − c}/ ‖Ω(x, y)‖

where TMx,y is the TM entry at location (x, y), Ω(x, y) is the
set of “on” pixels in the template, δ is the Dirac delta function,
and ‖Ω(x, y)‖ is the number of “on” pixels in the template. This
creates a 2-D image for each class. For each pixel, a threshold
is applied:

T̃ c
x,y = T c

x,y − αT (1)

where αT = 0.5 was selected to force the masks to have a
majority of “on” pixels. Thus, (1) forces pixels with surround-
ing areas with less than a majority of similar pixels to have a
threshold < 0.

The level set will not enter a region where the speed function
is 0, and it will leave areas where the speed function is negative.
In the following level set algorithm, the constant in step 1 was
determined experimentally, and k is a loop variable:

1. For k = 1 to 3
2. Compute the speed function: F c

x,y = T̃ c
x,yG̃c

x,y

3. Run level set until no sign changes
4. End For

In order to compare the proposed methods to a well-known
segmentation technique, the ML classifier is also used. In this
case, BBA is also performed, and for the given band constraints

(starting band length and whether to grow bands or to keep
constant length), the band set with the best MCJMD metric
will be used. ML is commonly used in remote sensing [2] and
will provide a meaningful comparison for the BSAM and BSID
results.

C. Experimental Data and Experiments

Two images are studied in this analysis. The “Mall” image
is an urban image of the mall area in Washington D.C., USA
and was collected using the Hyperspectral Digital Imagery
Collection Experiment sensor on August 23, 1995. The image
was subset into a 129 row by 235 column by 191 band image
(19 noisy bands were removed) containing endmembers that are
easily separated (water) and others which are more difficult to
classify correctly (i.e., grass and trees).

The “Farm” image was taken by the Compact Airborne
Spectrographic Imager [15] and was cropped to 315 rows by
1010 columns with 72 hyperspectral bands from approximately
414 to 954 nm with 8-nm spectral resolution. The image was
taken from a rural farm area in Brooksville, Mississippi, USA,
on July 1, 2002 in good weather conditions. The image is a
scene of the Black Belt Branch Experiment Station where field-
level agricultural experimental studies are conducted. The crops
have a high level of natural and imposed variations; therefore,
the ground cover classes are very challenging to segment and
classify.

Table I lists the number of training and testing signatures
for each class for both images. Experiments are performed for
various combinations of BSAM, BSID, ROC AZ , and BD, and
the various band group lengths are defined in Table II. Band
set L0 includes all bands, and L1–L5 were chosen to analyze
small local features in the data set, while band sets L6–L9

look at a larger number of bands. The band sets were chosen
in a previous work by the author based on the characteristics
from the mall image [3]. For instance, the large main peaks
of trees and grass are approximately 20 bands wide, the red
edge is approximately 4 bands wide, and the small peaks in
the main large peak are approximately 8–12 bands wide. L10



BALL AND BRUCE: LEVEL SET HYPERSPECTRAL IMAGE CLASSIFICATION USING BEST BAND ANALYSIS 3025

TABLE IV
FARM IMAGE EXPERIMENTAL RESULTS—OAS IN PERCENT

Fig. 1. OAs for the farm image using BSID metric. Note that similar results were obtained for BSAM metric.

is a combination of the smallest band sets. L6–L9 were added
to test for Hughes phenomenon effects. To test the robustness
of the proposed approach, the same band sets were also used
to analyze the farm image (except for sets with more than
72 bands).

The results are analyzed in terms of OA for both the initial
classification and the level set classification. A statistical analy-
sis is also performed based on the confusion matrices (CMs),
using a z-statistic method in [16]. A 95% confidence interval is
used (α = 0.95), which gives a critical level of z = 1.96, and
z-statistic values greater than 1.96 are considered statistically
different.

Experimental parameter selection is discussed here. The
isotropic filter region of support of size [11 × 11] is selected
to allow the Gaussian filter to sufficiently decay at the edges.
The process of picking a suitable window size is similar to
the process required when using 2-D filtering methods. The
appropriate window size depends on the size of the different
regions in the image. The sizes of the band selection sliding
template were initially chosen by hand after the examination of
spectral signatures from the mall image. These values were then
repeated for the farm image. Two suggested alternatives are
given: to follow the aforementioned approach, and to examine
spectral signatures from each class or to modify the procedure
to utilize intelligent band grouping. To narrow the focus of this
paper, the authors use fixed length windows. The cdf parameter
β was chosen to allow some small overlap of the cdf of a given
class with the other classes. The authors recommend to use a
value of β near one.

IV. RESULTS AND DISCUSSION

The results for the mall image are shown in Table III. The
worst results were just under 90% OA. The best results were

TABLE V
CONFUSION MATRIX FOR FARM IMAGE INITIAL SEGMENTATION.

DIAGONAL ELEMENTS ARE BOLD

TABLE VI
CONFUSION MATRIX FOR FARM IMAGE LEVEL SET SEGMENTATION.

DIAGONAL ELEMENTS ARE BOLD

98.12% OA for BSAM, BD, and band set L7. The results for
ROC AZ and BD are comparable. Only a few of the level
set results are statistically different from the initial classifica-
tion results (i.e., results with shaded background indicating a
z-statistic greater than 1.96). This is because the ground cover
classes in the mall image have relatively little natural variance,
i.e., intraclass variance; therefore, regions of uniform ground
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Fig. 2. Final TMs for the farm image. (a) Original image. (b) Initial segmen-
tation. (c) Level set segmentation.

cover class are highly homogeneous after the initial segmenta-
tion and classification.

The farm image OA’s are shown in Table IV, and the re-
sults show a drastic increase from the all-band (L0) case for
smaller band groups L2–L6. Larger band groups L7 and L8

performed worse than band groups L2–L6. This is most likely
a manifestation of the Hughes phenomenon. The results for the
midsized band groups were all above 95% OA. In general,
the initial segmentation and level set results were better than
the ML results. It is clear in Fig. 1 and Table IV that the level
set method clearly provided an improvement in all cases, and it
also provided a much more stable result (with respect to band
group size) in terms of OA. All cases in Table IV are shaded,
and in fact, the z-statistic was greater than 15 for all cases
demonstrating a strong statistical significance. Tables V and VI
show that the confusion matrix results are dramatically different
with smaller off-diagonals. Fig. 2(a)–(c) shows the original
farm image, best performing level set method result (BSID,
BD, L3) for the initial segmentation, and level set segmentation,
respectively. Note how the speckle noise is removed from
many of the fields, and how the regions have become more
homogeneous.

For both images, the overall results are quite high and may
not be as high in a large image if the training samples selected
do not adequately describe the true class distributions.

V. CONCLUSION

The initial segmentations using BSAM and BSID were
relatively accurate and outperformed the ML classifier. The
results for ROC AZ and BD are comparable, as well as for
BSAM and BSID. When ground cover classes were relatively
homogenous, as with the mall image, only a small improvement
was provided by the level set method. However, when the
ground cover classes were relatively heterogeneous, as with
the farm image, the level set method provided a significant
improvement, as evidenced by the high statistical differences
based on the analysis of the corresponding CMs. Moreover, the
application of the level set method made the OA’s less sensitive
to band group size and resulted in more homogenous ground
cover classes, i.e., the results were less sensitive to natural
intraclass variance in the vegetation classes.
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