MATH 603 Homework on Quadratic Forms and Positive Definite Matrices

The starred problems will be graded.

(1) 7.6.1

 (2^*) 7.6.4

(3*) Let **A** be symmetric positive definite. Prove that there is a c > 0 so that $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge c \|\mathbf{x}\|^2$ for all \mathbf{x} .

(4*) Prove that every inner product on \mathcal{R}^n is of the form $\langle \mathbf{x} | \mathbf{y} \rangle = \mathbf{x}^T \mathbf{A} \mathbf{y}$ for some symmetric positive definite matrix \mathbf{A} .

(5*) Let A be symmetric positive definite. Prove that there is a unique symmetric positive definite \mathbf{B} so that $\mathbf{B}^2 = \mathbf{A}$.

(6) Express the following quadratic forms as a sum/difference of squares. Which are positive definite? [Use linear algebra!]

(a) $x^2 + 8xy + y^2$ (b) $x^2 - 4xy + 7y^2$ (c) $x^2 + 6xy$

(7^{*}) Suppose \mathbf{A} and \mathbf{B} are symmetric positive definite. Which of the following are symmetric positive definite? (Prove or provide a counter example.)

(a) $\mathbf{A} + \mathbf{B}$

(b) **AB**

(c) A^{-1} .